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SUMMARY

Regional seismic imaging of continental margins from ultra
long-offset sparse ocean-bottom node (OBN) data by Full-
waveform inversion (FWI) is challenging because the com-
plexity of the wavefields and the large number of propagated
wavelengths significantly amplify the nonlinearity of the in-
verse problem. Moreover, the sparsity of OBN deployments
mitigates the fold and can induce aliasing artifacts in the shal-
low part of the model. In this context, deriving a sufficiently-
accurate initial model that prevents cycle skipping is difficult.
We circumvent this challenge with time-domain extended-
source (ES-) FWI combined with total variation regulariza-
tion. ES-FWI first estimates at each iteration the scattering
sources of the scattered wavefield by the sought perturbation
model by fitting the data residuals (the scattered data) before
updating the subsurface model toward the true model by mini-
mizing the scattering sources (wave-equation errors). Accord-
ingly, data are matched arbitrarily well and cycle skipping is
avoided. We design a practical time-domain acoustic ES-FWI
workflow from synthetic OBN data computed in a regional ge-
omodel of a subduction zone. This study demonstrates that ES-
FWI can effectively converge towards precise reconstruction
of complex geological structure starting from basic 1D model
with severe cycle-skipping. Source-focusing and data-domain
weighting matrices in the bi-objective function are however
two necessary ingredients to design a layer-stripping scheme
that greatly enhances the robustness of ES-FWI.

INTRODUCTION

Long-offset controlled-source stationary-recording seismic sur-
veys carried out with Ocean-Bottom Nodes (OBN) are widely
used for the regional deep-offshore exploration of continen-
tal margins. For such crustal surveys, the predominant ap-
proach for determining large-scale crustal structures still re-
lies on traveltime tomography (see Christeson et al. (2014) for
a Gulf of Mexico case study). Alternatively, full waveform
inversion (FWI) leverages the entire dataset to build subsur-
face models with a wavelength resolution (Virieux and Operto,
2009). While FWI has emerged as the fundamental technique
for characterizing subsurface structures in the realm of oil/gas
exploration (Sirgue et al., 2010), its application to OBN data at
the regional scale remains infrequent (Górszczyk et al., 2017,
2021). One of the primary challenges in applying standard
FWI to crustal-scale seismic imaging is the cycle-skipping prob-
lem, which traps FWI in spurious minima when the simulated
data in the initial model don’t match the observed data with an
error of less than half the minimum period. This problem be-
comes particularly pronounced when dealing with ultra long-
offset OBN data that involve many propagated wavelengths.
Building kinematically accurate initial model for crustal-scale
FWI requires careful quality control of traveltime picking and
traveltime tomography results, which can be quite time con-

suming (Górszczyk et al., 2017). Moreover, data-driven hier-
archical schemes based on frequency, time and offset continu-
ation are often necessary to further mitigate FWI non linearity
(Shipp and Singh, 2002; Górszczyk et al., 2017).

In recent decades, significant progress has been made to mit-
igate cycle skipping by convexifying FWI. One category of
methods replaces the least-squares norm of the data misfit with
more convex distances between observed and simulated data
such as those based on optimal transport or deconvolution (e.g.
Warner and Guasch, 2016; Métivier et al., 2018). Other ap-
proaches adds degrees of freedom in the forward problem to
expand the search space of the inversion (Symes, 2008). This
extension can be performed in the model domain (Barnier et al.,
2023), source domain (van Leeuwen and Herrmann, 2013) and
receiver domain (Métivier and Brossier, 2022). Despite the
rapid development of these FWI variants, their application at
the regional scale has been limited. Górszczyk et al. (2021)
demonstrated the potential of using optimal transport to ad-
dress the cycle skipping problem using a narrow time window
of low-frequency data and complex data-driven workflow in-
volving amplitude normalization. To date, this may represent
the sole successful application of alternative cost function at
the regional scale. In contrast, numerous synthetic case stud-
ies have validated the potential of extended-space approaches
in exploration geophysics, while the robustness at the regional
scale has yet to be proven. This study aims at filling this
gap with an application of extended-source(ES)-FWI (Gho-
lami et al., 2022; Guo et al., 2024) to the regional GO 3D OBS
geomodel (Górszczyk and Operto, 2021). This feasibility anal-
ysis is the prerequisite before the application to real OBN data
for regional exploration (Górszczyk et al., 2017, 2021).

METHOD

FWI is formulated as a nonlinear multivariate partial differen-
tial equation (PDE)-constrained optimization problem:

min
us,m

∑
s
‖Psus−d∗s‖2

2 s.t. A(m)us = b∗s , for all s, (1)

where s is the source index, us is the wavefield triggered by
the source s, d∗s is the recorded data for the source s, b∗ is the
physical source s, Ps samples us at receiver locations, A(m)
is the wave equation operator. In the following, we drop the
summation over s for the sake of compact notation. Wave-
field reconstruction inversion (WRI) recasts the original multi-
variate constrained problem, equation 1, as the following un-
constrained problem with a penalty function (van Leeuwen and
Herrmann, 2013),

min
us,m

Pµ (us,m) =
1
2
‖Psus−d∗s‖2

2 +
µ

2
‖A(m)us−b∗s‖2

2, (2)

where µ is the penalty parameter. The penalty function per-
forms a relaxation of the wave equation that allows one to
fit the data arbitrarily well through the tuning of µ . This bi-
variate problem can be solved with alternating directions or by



variable projection (van Leeuwen and Herrmann, 2016). How-
ever, the implementation of WRI in the time domain is chal-
lenging because the wavefield in equation 2 is the solution of a
normal equation. To address this issue, Gholami et al. (2022);
Operto et al. (2023) reformulate the wavefield reconstruction
problem as a scattering source problem after the change of
variable us → δbs where A(m)us− bs = δbs. The problem
2 becomes

min
δbs,m

Pµ (δbs,m) =
1
2
‖Ss(m)δbs−δd∗s‖2

2 +
µ

2
‖δbs‖2

2.

where Ss(m) = PsA(m)−1 and δd∗s = Psus − d∗s . Further-
more, Guo et al. (2024) introduce a generalized cost function
for time-domain ES-FWI:

min
δbs,m

Pµ (δbs,m) =
1
2
‖Ss(m)δbs−δd∗s‖2

Qds
+

µ

2
‖δbs‖2

Qbs
,

(3)

where Qd and Qb denote data-domain and source-domain weight-
ing matrices, respectively. Let’s focus first on the lower-level
problem for δbe

s as the minimizer of the monovariate objective
function considering m fixed. According to Tarantola (2005,
equation 6.525), the closed-formed expression of δbe

s(m) is
given by

δbe
s(m) = Q−1

bs
Ss(m)T Qds H(m)−1

ds
δd∗s (m), (4)

where the weighted data-domain Hessian is given by

H(m)ds = µI+Ss(m)Q−1
bs

Ss(m)T Qds . (5)

The computation of this data-domain Hessian is the main bot-
tleneck of time-domain ES-FWI. Gholami et al. (2022) and
Guo et al. (2024) approximate it by a scaled identify matrix
and by matching filters, respectively. Finally, ue

s can be com-
puted with explicit time-stepping schemes by solving the wave
equation A(m)ue

s = b∗s +δbe
s(m). The gradient of Pµ (δb,m)

.wrt. m is the gradient of the `2 norm of the scattering source:

∇mPµ (δb,m)|δbe =
∑

s

(
∂A(m)ue

s
∂m

)T
Qbs δbe

s(m) (6)

The Gauss-Newton Hessian reduces to the weighted correla-
tion of the extended-space virtual sources

∇
2
mPµ (m) =

∑
s

(
∂A(m)ue

s
∂m

)T
QT

b

(
∂A(m)ue

s
∂m

)
. (7)

We implement Qb as a spatial source-focusing function to pe-
nalize more strongly scattering sources that are far away from
the point source position following the annihilator approach
promoted by Huang et al. (2018); Rizzuti et al. (2021),

Qb(x) =
√

(x−xs)2, (8)

where xs denotes the position of the source s. The variance
assigned to the source extension away from the sources be-
comes increasingly small hence damping the perturbation of
the source extensions away from the source. This is shown by
the expression of the Newton descent direction for δb which is
scaled by the inverse of Qb, equation 4. On the other hand, we
design Qd as a combination of time and offset windowing to
implement a layer stripping approach (Górszczyk et al., 2017),
which allows us to easily control the data subset injected in the

0

10

20D
ep

th
 (k

m
)

(a)

(b)

(c)

0

10

20D
ep

th
 (k

m
)

0

10

20D
ep

th
 (k

m
)

0 10 20 30 40 50 60 70 80 90 100
Distance (km)

Figure 1: GO 3D OBS benchmark. (a) True model. (b)
Smoothed initial model. (c) 1D initial model.

inversion. This is combined with a classical frequency contin-
uation approach leading to the multi-scale ES-FWI algorithm.
To avoid tedious adaptive tuning of µ , we implement ES-FWI
with an augmented Lagrangian function, which combines the
penalty function, equation 2, with a Lagrangian function (Gho-
lami et al., 2022; Guo et al., 2024).

Numerical tests

Experimental setup
We illustrate how ES-FWI mitigates the detrimental impact
of cycle-skipping of ultra long-offset OBN data with a 2D
section of the GO 3D OBS geomodel. This geomodel repre-
sents a subduction zone inspired by the geology of the Nankai
trough (Górszczyk and Operto, 2021) (Figure 1a). The role of
the weighing operators in ES-FWI is illustrated with two ini-
tial models: the first one is generated by smoothing the true
model with a Gaussian filter of correlation lengths 1.8 km×
4.2 km (Figure 1b). This model contains the long wavelengths
of the true model but it is not accurate enough to avoid cycle
skipping for the considered frequency bandwidth. The sec-
ond is a linear gradient 1D model that doesn’t contain a pri-
ori information about the true model (Figure 1c) with the ex-
ception of the water wavespeed and bathymetry. The acqui-
sition involves 100 OBNs on the seabed spaced 1 km apart
and 1040 shots spaced 100 m apart at 50-m depth below sea
surface. OBNs and shots are processed as reciprocal sources
and receivers, respectively. We perform wave simulation with
a finite-difference time-domain modeling engine using a 28 s
recording length and a 2 Hz Ricker wavelet. ES-FWI is per-
formed within the (1.5, 4) Hz frequency band. We implement
a free-surface boundary condition at the sea/air interface and
perfectly matched layer (PML) absorbing condition on the re-
maining sides of the model. We recall that we use total vari-
ation regularization (Aghamiry et al., 2019) to carry out these
two tests. Moreover, we approximate the inverse data-domain
Hessian with a 2D Gabor filter (Guo et al., 2024).

Results
Smooth initial model: On the effect of source-focusing
We first compare classical FWI and ES-FWI using the smoothed
initial model depicted in Figure 1b. For this test, we use only
the source-focusing function, equation 8, as a weighting oper-



ator in the generalized ES-FWI, equation 3. The configuration
of the multi-scale inversion is outlined in Table 1. First, we
Table 1: Smoothed initial model. Outline of inversion steps.
f req: frequency band involved in inversion. grid: grid sizes.
Grid interval is matched to minimum wavelength. #it: number
of iterations.

Scale freq (Hz) grid (nz × nx × nt) #it
1 (ES-FWI) 1.5-1.8 173 × 701 × 2801 42
2 (ES-FWI) 1.5-2.0 173 × 701 × 2801 31
3 (ES-FWI) 1.5-2.8 259 × 1041 × 4001 44

4 (FWI) 1.5-4.0 345 × 1401 × 5601 112

assess data match at the first scale using classical FWI and ES-
FWI. Significant cycle-skipping between recorded and simu-
lated data is obvious in Figure 2a. Accordingly, FWI converges
towards an incorrect model due to cycle skipping (Figure 3a).
Moreover, ES-FWI converges towards a spurious minimum
when the source-focusing function is not used (Qb, equation 8)
(Figure 3b). Compared with the result of FWI (Figure 2b), the
short-offset data of ES-FWI could align with observed data
(Figure 2c). However, the data recorded at offsets greater than
20 km are still cycle-skipped, because the approximation of
the inverse data-domain Hessian with a 2D matching filter is
not precise enough. Rather than paying the price of the com-
putational cost of improving the accuracy of the inverse data-
domain Hessian, we introduce the source-focusing function to
ES-FWI without additional computational burden. As shown
in Figure 3c, the long-wavelength structure is reconstructed
well by ES-FWI with a source-focusing function. Despite this
achievement, long-offset data ranging from 80 to 100 km con-
tinue to be cycle skipped (Figure 2c), and the deep structure
beneath the subducting crust remains imprecise. This source-
focusing function could partly compensate for the inaccuracy
of data-domain Hessian, especially for such large-scale crustal
ES-FWI. Then, starting from the final model of the first-scale
ES-FWI with source focusing, we initiate the second-scale in-
version with the same approach. The final model of the second
scale inversion is shown in Figure 4a. Upon completing the
third-scale inversion using ES-FWI with source-focusing, the
deeper structure is well-reconstructed (Figure 4b). Lastly, we
switch from ES-FWI to FWI in the fourth-scale inversion to
further refine the structure (Figure 4c).

Crude initial model: On the effect of time-offset windowing
We proceed now with the second test using the 1D linear initial
model (Figure 1c). The configuration of the multi-scale inver-
sion with layer stripping (Qd and Qb are used) is outlined in
Table 2. In a similar manner, we show the data match between
the simulated data in the 1D linear model and the observed
data at the first-scale step, where the data mismatch spans sev-
eral cycles (Figure 5a). Starting from this crude initial model,
ES-FWI with a source-focusing function struggles to converge
towards an accurate model (Figure 6a), and the data mismatch
remains substantial (Figure 5b). However, when we introduce
a data-domain time-offset windowing in ES-FWI combined
with a source-focusing function, we can progressively involve
more complex data in the inversion process and better control
the level of hierarchy with which the model is updated from
the shallow parts to the deeper parts (Figure 6b), ultimately
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Figure 2: Smoothed initial model. Data fit after the first-scale
inversion. (a-d) Interleaved observed data and simulated data
in (a) the initial model (Figure 1b), (b-d) the inverted model
using (b) FWI (Figure 3a), (c) ES-FWI without Qb (Figure 3b)
with Qb (Figure 3c).
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Figure 3: Smoothed initial model. Final models of first-scale
inversion. (a-c) Reconstructed model using (a) FWI, (b-c) ES-
FWI without (b) and with (c) Qb.

leading to a much improved solution. The time windows de-
fined from the first-arrival traveltimes and the maximum offset
involved in each inversion step are outlined in Table 2. Simu-
lated data now closely aligns with observed data, even at long
offsets (Figure 5c). Subsequently, we proceed with the second
scale (Figure 7a) and the third scale (Figure 7b) by process-
ing the entire dataset in one go, without data weighting using
generalized ES-FWI with Qb. In the final scale, we employ
classical FWI to further refine the structure of the subduction
zone (Figure 7c).
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Figure 4: Smoothed initial model. Multi-scale inversion start-
ing from the final model of the first-scale inversion (Figure 3c).
(a-b) Final model of second-scale (a) and third-scale (b) in-
version by generalized ES-FWI with Qb. (c) Final model of
fourth-scale inversion by FWI.

Table 2: 1D initial model. Outline of inversion steps. T: time
window from first arrival involved in inversion. O: maximum
offset involved in inversion. Spatial and temporal sampling for
each scale are the same as those of Table 1.

Scale freq (Hz) iterations T (s) O (km)
1 (ES-FWI) 1.5-1.8 42 5 5
1 (ES-FWI) 1.5-1.8 42 6 6
1 (ES-FWI) 1.5-1.8 23 6 12
1 (ES-FWI) 1.5-1.8 32 6 24
1 (ES-FWI) 1.5-1.8 32 7 36
1 (ES-FWI) 1.5-1.8 32 7 120
2 (ES-FWI) 1.5-2.0 101 all all
3 (ES-FWI) 1.5-2.8 84 all all

4 (FWI) 1.5-4.0 42 all all

CONCLUSIONS

We assess up to which point ES-FWI allows one to relax all
the necessary specifications that need to be fulfilled to make
crustal-scale FWI work in a challenging context. According
to recent studies, these specifications are a kinematically accu-
rate starting model regarding the smallest available frequency,
frequency continuation, and layer stripping by time-offset win-
dowing. We show that these specifications are still beneficial
for ES-FWI. However, the need for a highly accurate travel-
time picking and starting model with tedious quality control,
which is probably the most time-consuming and complex task,
can be probably relaxed when using ES-FWI. This can miti-
gate significantly human intervention and tend toward a more
automatic use of FWI. This synthetic benchmark allows us
to set up different ingredients (covariance matrices and layer
stripping scheme by time-offset windowing) which can be use-
ful to make ES-FWI more robust in very complex settings. The
next step was the application on real data with the issue of the
specific tuning of these ingredients for a real case study.
Acknowledgments: This study was funded by the WIND con-
sortium (www.geoazur.fr/WIND). This study was granted ac-
cess to the HPC resources of SIGAMM and the HPC resources
of GENCI under the allocation 0596.
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Figure 5: 1D initial model. Data fit after first-scale inversion.
(a-d) Interleaved data between observed data and simulated
data in (a) initial model (Figure 1c), (b-c) the final model in-
ferred from generalized ES-FWI using (b) Qb only (Figure 6a),
(c) Qb and Qd (Figure 6b).
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Figure 6: 1D initial model. Final models of first-scale inver-
sion. (a-b) Reconstructed model by generalized ES-FWI with
(a) Qb only, (b) Qb and Qd .
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Figure 7: 1D initial model. Multi-scale inversion starting from
the final model of the first-scale inversion (Figure 6g). (a-b)
Model inferred from the second-scale (a) and third-scale (b)
inversion using generalized ES-FWI with Qb. (c) Final model
of fourth-scale inversion using FWI.
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