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Summary 
 
We develop a deep neural network-based method for 
automatic baseline correction (ABC-Net) of spontaneous 
potential (SP) logs to overcome the challenge of SP log 
deviation and trend accumulation with depth due to salinity 
and temperature effects. Our method utilizes a deep 
convolutional U-Net model to estimate the baseline-
corrected SP log from the raw SP log and a set of collocated 
predictor features based on feature engineering. The 
baseline-corrected SP log is used to calculate volumetric 
concentration of shale and to detect potential sweet spots 
along the well for CO2 storage. A benefit of this approach is 
its ability to compress and denoise the raw SP log and 
predictor features into a latent representation and then to 
efficiently predict the baseline-corrected SP log without 
manual interpretation. We train our deep learning model 
against manually-corrected SP logs, and test with unseen 
wells. Finally, we use the trained deep learning model to 
estimate the baseline-corrected SP logs and calculate the 
volumetric concentration of shale to detect sweet spots for 
potential CO2 storage in the Gulf of Mexico.  
 
Introduction 
 
It is becoming standard practice to use old or abandoned 
hydrocarbon wells, known as legacy wells, for CO2 storage, 
hydrogen storage, or geothermal energy production because 
of the possibility of reactivation or deepening the pre-
existing wells at a reduced economic expense. However, 
legacy wells typically do not have significant amounts of 
data or measurements associated with them. In the well-log 
domain, spontaneous potential (SP) and gamma ray (GR) 
logs tend to be the only source of data available; methods for 
petrophysical interpretation must be derived accordingly.  
 
The SP log is one of the earliest borehole measurements in 
the energy industry and has a significant role in formation 
evaluation for determining lithology and permeable zones 
(Asquith & Krygowski, 2004). However, temperature and 
salinity have significant effects on SP measurements 
(McConnell, 1983, 1988). These effects result in a trend 
accumulation along the depth of the well and require expert 
interpretation to either remove the baseline trend or shift the 
trend to a baseline for accurate interpretation of lithology 
and permeable zones.  
 
Baseline correction algorithms have been widely explored, 
and often depend on an iterative approach for data shifting 

based on an engineered feature or filter (Gan et al., 2006). 
McConnell (1983, 1988) was the first author to describe a 
baseline correction method for SP logs using a linear 
correction term, and later using combinations of potential, 
salinity, and environmental terms. Bautista-Anguiano & 
Torres-Verdín (2015) developed a robust mechanistic 
modeling framework for the interpretation of SP logs, 
including a physics-based correction based on specific 
reservoir conditions.  
 
Peyret et al. (2019) compared deep learning methods for 
automatic well-log interpretation from lithology-specific 
logs. Shan et al. (2021) developed a deep learning method 
for well-log generation that is consistent with reservoir rock 
properties. Tang et al. (2021) introduced an ensemble 
machine learning framework for sweet spot detection using 
a suite of well logs. Simoes et al. (2022) developed a deep 
learning-based multi-well automatic log correction 
workflow for imputation and generation of missing logs. 
However, none of these approaches combine the concepts of 
automatic baseline correction for SP logs and the prediction 
of sweet spots for CO2 storage along a well. 
 
We develop a deep learning-based method for automatic 
baseline correction of SP logs and sweet spot detection to 
identify potential CO2 storage sites in the Gulf of Mexico. 
The deep learning method, named ABC-Net for automatic 
baseline correction network, exploits the latent 
representation of the raw SP log for compression and 
denoising and uses a combination of raw data and 
engineered features to estimate the baseline-corrected SP 
log. Subsequently, the baseline-corrected SP log is used to 
estimate the volumetric concentration of shale along the well 
to detect sweet spots for CO2 injection. We train and test the 
new interpretation/processing method on a field dataset from 
Gulf of Mexico. 
 
Method 
 
We first process the data by filtering a large library of well 
logs in the Gulf of Mexico and select the ones with the SP 
log. The next step is to impute any missing values with a zero 
mask and zero-padding the SP log for all wells to create a 
tabular training set. The masked and padded values are 
flagged so that the deep learning method does not include 
those values during the model training step. Normalization 
is applied to the well logs to aid the training process of the 
neural network model. 
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We compute eight engineered features from the SP logs to 
improve the prediction and exploit the latent structure in the 
data. Let 𝑿 represent a raw SP log, the corresponding 
engineered features are calculated as follows: 
 
The derivative with respect to depth is given by the centered 
finite difference formula  

𝛁𝑿 =
𝑥 − 𝑥

2ℎ
 , (1) 

where ℎ is the sampling rate in depth of the well log, 
typically 0.25 or 0.5 ft. 
 
The autocorrelation of 𝑿 is written as 

𝑹𝑿𝑿 = 𝑥 𝑥∗

‖ ‖

 , (2) 

where ⋅∗ is the complex conjugate operator, 𝑁 = ‖𝑥‖, and 
𝑘 = 0,1, … ,2‖𝑥‖ − 2.  
 
The linear detrend feature is expressed as 

𝑳𝑿 = 𝑿 − 𝑚𝑿 , (3) 
where 𝑚𝑿 is the slope coefficient obtained from a least-
squares fit, ‖𝑿 − (𝑚𝑿𝑿 + 𝑏)‖ .  
 
The Fourier transform of 𝑿 is given by 

𝓕𝑿 = 𝑿𝑒  . (4) 

 
The Hilbert transform of 𝑿 is expressed as 

𝓗𝑿 = ℱ𝑿 (ℱ𝑿2𝑈) , (5) 
where ℱ  is the inverse Fourier transform and 𝑈 is the unit 
step function.  
 
The symmetric infinite impulse response (IIR) filter is 
written as 

𝓘𝑿 =
𝑐

(1 − 𝑧 𝑥⁄ )(1 − 𝑧𝑥)
 , (6) 

where 𝑐  and 𝑧 are parameters of the transfer function. In our 
case, 𝑐 = 0.5 and 𝑧 = 0.1, determined empirically. 
 
The Savitzky-Golay filter is given by 

𝒀𝑿 = 𝑐 𝑥  , (7) 

where 𝑐  are the coefficients of a polynomial fit of the raw 
data and 𝑚 is half the window size. In our case, a polynomial 
of order 2 is used, and the window size is 15, determined 
empirically. 
 
The cubic spline coefficients are given by 

𝓢𝑿 = 𝑎 + 𝑏 (𝑥 − 𝑥 ) + 𝑐 (𝑥 − 𝑥 ) + 𝑑 (𝑥 − 𝑥 )  , (8) 
where 𝑎 , 𝑏 , and 𝑐  are coefficients that solve a system of 
equations that ensure continuity and smoothness.  
 

Let 𝝃 represent the set of a raw SP log and its corresponding 
set of engineered features. Figure 1 shows a raw SP log and 
its corresponding set of engineered features, 𝝃, for a 
randomly selected well. 

Deep convolutional U-Net neural networks have been 
widely used for computer vision and signal processing tasks, 
including translation, segmentation and denoising (Chang et 
al., 2021). The proposed ABC-Net is a deep convolutional 
U-Net neural network trained to estimate the baseline-
corrected SP log, namely 𝝃, from the raw SP log and its set 
of engineered features, 𝝃. The encoder portion of ABC-Net, 
𝐸𝑛𝑐, compresses the inputs into a latent representation, 𝒛, 
such that 𝒛 = 𝐸𝑛𝑐(𝝃). On the other hand, the decoder 
portion, 𝐷𝑒𝑐, is a mirror image of the encoder and estimates 

 
Figure 1:  The raw SP log (A) and its corresponding engineered 
features: (B) derivative with respect to depth, ∇𝑿, (C) 
autocorrelation, 𝑹𝑿𝑿, (D) linear detrend, 𝑳𝑿, (E) Fourier transform, 
𝓕𝑿, (F) Hilbert transform, 𝓗𝑿, (G) IIR filter, 𝓘𝑿, (H) Savitzky-
Golay filer, 𝒀𝑿, and (I) cubic spline coefficients, 𝓢𝑿, for a randomly-
selected well. 
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the baseline-corrected SP log, 𝝃, from the latent 
representation, such that 𝝃 = 𝐷𝑒𝑐(𝒛) = 𝐷𝑒𝑐 𝐸𝑛𝑐(𝝃) . 
Residual concatenations, also known as skip connections, 
connect the layers of the encoder and decoder with weights 
to enhance adaptation of the system to the required level of 
complexity during training, i.e., retain fine-grained details 
and spatial information, and reduce information loss. The 
encoder is composed of three hidden layers, each with a 1D 
convolution, batch normalization, rectified linear unit 
(ReLU) activation, dropout, and maximum pooling. 
Similarly, the decoder is composed of three hidden layers 
each ending with an up-sampling operator instead of 
maximum pooling. Figure 2 shows the model architecture of 
ABC-Net and a description of the internal structure of each 
layer in the encoder and decoder portions of the model. 

 
Results 
 
A subset of 389 wells is selected for model training and 
withheld data testing. Each well is processed and then 
partitioned into a random training and testing set with 300 
and 89 wells, respectively. The ABC-Net is trained using the 
Adam optimizer with learning rate 0.01 and batch size of 30 
for 100 epochs using an NVIDIA RTX 3080 GPU. At each 
epoch, a random subset of 20% the batch size is used for 
validation. Mean Square Error (MSE) is used as the loss 

function, such that ℒ = 𝝃∗ − 𝝃 , where 𝝃∗ is the manually 

labeled baseline-corrected SP log. The model has a total of 
89,681 parameters and requires approximately 1.64 hours of 
CPU time to train.  

Comparing the baseline-corrected SP log predicted from 
ABC-Net, 𝝃, against manually-labeled SP logs, 𝝃∗, the 
average training and withheld data testing error are 12.9% 
and 13.6%, respectively. Figure 3 shows the raw and 
baseline-corrected SP logs for 3 randomly selected wells. 
Once trained, each test prediction requires 420 milliseconds 
of CPU time, providing a significant advantage for rapid 
baseline correction without the need for manual 
interpretation. 

We observe that ABC-Net is capable of estimating the 
baseline-corrected SP log accurately and rapidly within 13% 
error. Due to the lossy compression of the Encoder-Decoder 
architecture, there are differences in terms of amplitude at 
several locations along the well; however, the baseline-
corrected trend is accurately captured everywhere.  
 
The predicted baseline-corrected SP logs from ABC-Net are 
used to calculate the volumetric concentration of shale, 𝐶 , 
as a function of depth along the well as follows: 

𝐶 𝝃 =
𝝃 − 𝝃

𝝃 − 𝝃
, (9) 

where 𝝃  and 𝝃  represent the 90th and 10th percentile of 
the baseline-corrected SP log. Figure 4 shows the estimated 
𝐶  for 3 randomly selected wells. 
 
Given that the SP log is a lithology-dependent well log, the 
estimation of 𝐶  from the baseline-corrected SP log 
provides a quick interpretation of permeable zones and 
impermeable seals as sweet spots for potential CO2 storage. 

 
Figure 2:  Architecture of the proposed ABC-Net. The raw SP log 
and its corresponding set of engineered features, 𝝃, are compressed 
into a latent representation, 𝒛, through the encoder portion of the 
network, 𝐸𝑛𝑐. The Decoder, 𝐷𝑒𝑐, then predicts the baseline-
corrected SP log, 𝝃, such that 𝝃 = 𝐷𝑒𝑐(𝒛) = 𝐷𝑒𝑐(𝐸𝑛𝑐(𝝃). The 
Encoder and Decoder are mirror images of each other, and each have 
3 layers, with  residual concatenations used to connect the 
corresponding layers. 

 
Figure 3:  The raw SP log (purple), manually-labeled baseline-
corrected SP log (blue), and predicted baseline-corrected SP log 
(black) using ABC-Net for three randomly selected wells. 
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To interpret the sweet spots along the well, we compute the 
moving window average of the estimated 𝐶  as 

(𝐶 ∗ 𝑈) = 𝐶 𝑈  , (10) 

where ∗ is the convolution operator and 𝑈 is the unit step 
function. The window is defined to have a size 𝑛 = 400, 
corresponding to 200 ft for a well log with sampling rate of 
0.5 ft. A cutoff, 𝜅, is defined to mask the sweet spots such 
that (𝐶 ∗ 𝑈) < 𝜅 ⟹ 𝐶 , where 𝜅 = 0.6. Figure 4 
shows the estimated 𝐶  for 3 randomly selected wells and 
their corresponding sweet spots.  

Using the estimated 𝐶 -derived sweet spots for each well 
from the ABC-Net baseline-corrected SP logs, we can 
calculate the sweet spot ratio for each well as the ratio of 
total sweet spot thickness over the total depth of the welll. 
Furthermore, we can compute the spatial distribution of 
sweet spots along the Gulf of Mexico by plotting the x- and 
y-coordinates of each well and their corresponding sweet 
spot ratio, as shown in Figure 5. 
 
The ABC-Net method is capable of rapid estimation for a 
large number of wells with varying degrees of baseline 
trends, as well as robust to varying logging interval, multiple 
runs, and noise levels. A single training session is required 
for ABC-Net to obtain the optimal weights and biases. Once 
trained to estimate the baseline-corrected SP log, ABC-Net 
can be deployed for a very large number of wells to obtain 
predictions of permeable and impermeable zones very 
rapidly. Furthermore, by mapping the spatial distribution of 

wells along a region, (e.g., the Gulf of Mexico), the ABC-
Net worfklow can be applied to estimate regional sweet 
spots at a basin scale within reasonable accuracy and at very 
low computational costs. 
 
ABC-Net provides rapid estimation of baseline-corrected SP 
logs, which are used to estimate the volumetric 
concentration of shale along the well as a tool to identify 
permeable and impermeable zones for CO2 storage. 
However, ABC-Net is only trained for SP log baseline 
correction, and would require more data and retraining in 
order to estimate other well logs for lithology identification 
such as GR. Also, the SP log-derived engineered features 
used to train ABC-Net must be computed prior to training 
and can be time consuming, so further sensitivity and feature 
selection for the best enginereed features should be 
performed. 
 
Conclusions 
 
We developed a deep learning-based method for automatic 
baseline correction of well logs, namely ABC-Net. This 
method allows for efficient petrophysical evaluation of well 
logs without the need for manual correction or interpretation 
which can be time-consuming and subjective. Using SP logs 
as a lithology-dependent measurement, we estimated 
permeable and impermeable zones along a well for potential 
CO2 storage zones. We trained and tested our method with 
data from 389 wells from the Gulf of Mexico and obtained 
predictions for each well within 420 milliseconds of CPU 
time at only 13.6% error on average without the need for user 
interpretation or manual corrections. The ABC-Net 
workflow is implemented at the well-log scale and at the 
basin scale to estimate the spatial distribution and depth of 
possible sweet spots for CO2 injection based on lithology 
estimated from the automatically baseline-corrected SP logs. 
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Figure 4:  Estimated 𝐶  from the baseline-corrected SP log from 
ABC-Net, 𝝃, for three randomly selected wells. The yellow mask 
shows the estimated sweet spots for CO2 injection along each well. 

 
Figure 5:  Spatial distribution of the sweet spot ratio for all training 
and testing wells in the Gulf of Mexico.  


