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SUMMARY

We investigate both global and local low-rank repre-
sentations for seismic reflectivity models. Within the
global singular value decomposition (SVD) framework,
singular vectors delineate elementary modes represent-
ing horizontal and vertical stratigraphic segments, while
corresponding singular values serve as weights for these
fundamental modes, collectively forming a broadband
reflectivity model. Local SVD, on the other hand, cap-
tures nonlocal similarities and achieves reflectivity rep-
resentation with fewer ranks than global SVD method.
Taking advantage of this favorable sparsity, we intro-
duce a local low-rank regularization into LSM to esti-
mate subsurface reflectivity models. Numerical exper-
iments for synthetic and field data demonstrate that
the low-rank constraint outperforms conventional shap-
ing and total-variation regularizations, and can produce
high-quality reflectivity images for complicated struc-
tures.

INTRODUCTION

Tectonic movements and sedimentary processes give rise
to diverse subsurface strata, featuring fundamental el-
ements like horizontal and dipping layers, angular un-
conformities, pinch-outs, folds and faults. These dis-
tinctive characteristics lead to nonlocal similarities in
seismic reflectivity models, which can be sparsely repre-
sented through suitable basis functions. In this study,
we explore global and local low-rank representations for
reflectivity models. In global singular value decompo-
sition (SVD) approach, we observe that eigenvectors
delineate horizontal and vertical stratigraphic segments
sorted from low to high wavenumbers, with correspond-
ing eigenvalues serving as weights for assembling these
eigenvectors into a broadband reflectivity model. In
contrast, the local SVD for grouped patches can effec-
tively capture nonlocal geological patterns. This capa-
bility enables accurate description of subsurface reflec-
tivity using fewer ranks compared to the global SVD
method.

Seismic imaging serves as a crucial tool for reconstruct-
ing subsurface reflectivity by migrating seismic data ac-
quired at the surface into the depths below. Over time,
seismic imaging methods have evolved from ray-based
migration (Gray and May, 1994), through one-way wave
equation migration (Gazdag, 1978; Stoffa et al., 1990),
to advanced reverse-time migration (RTM) (McMechan,
1983). These methods utilize the adjoint operator of
forward modeling rather than the inverse operator, pos-

ing challenges in achieving accurate images, particularly
in scenarios with finite acquisition aperture, limited fre-
quency bands and uneven illumination. By solving a lin-
ear inverse problem, least-squares migration (LSM) can
reduce the Hessian effect and improve the image qual-
ity (Nemeth et al., 1999; Dai et al., 2011). To mitigate
data overfitting artifacts, various regularization strate-
gies have been developed, including shaping regulariza-
tions (Xue et al., 2016; Yang et al., 2021), curvelet-
domain sparsity promotion (Herrmann and Li, 2012),
and total-variation (T'V) regularization (Lin and Huang,
2015). Taking advantage of local low-rank sparse repre-
sentation, we introduce a low-rank regularization into
LSM to estimate subsurface reflectivity. A two-step

framework, including least-squares data fitting and weighted

nuclear-norm minimization, is utilized to solve the low-
rank constrained inversion problem. Numerical experi-
ments for synthetic and field data demonstrate that the
low-rank constraint outperforms traditional smoothing
and TV regularizations to generate high-quality reflec-
tivity images for complicated structures.

THEORY

Global low-rank representation

Seismic reflectivity model can be converted into a matrix
by setting the depth as the first dimension and the inline
or cross line as the second dimension. Then, applying
the SVD to the matrix leads to

m=UxV", (1)

where m represents a reflectivity matrix, U and V are
the left and right singular matrices, and X is the di-
agonal singular value matrix. The columns of U and
V correspond to the base vectors of the coordinate sys-
tem, which determine the elementary modes of the re-
flectivity model with different wavenumbers. The sin-
gular values describe the contribution of these modes to
construct a broadband reflectivity profile. If the reflec-
tivity matrix has few linearly independent columns, it
can be efficiently represented using a low-rank approxi-
mation by truncating small singular values or minimiz-
ing the matrix nuclear norm. In a truncated SVD, the
reflectivity model can be approximated as

m ~U,2,VF, 2)

where 3 denotes a modified singular value matrix by
setting all but the first k largest singular values to zero,
where U, and Vi mean that only their first k& columns
are used in the calculation. On the other hand, the low-
rank representation can be implemented by minimizing



the matrix nuclear norm:
1 2
x(m) = Sjmeer — mf|” + Af[ml., 3)

where mc,; is the calculated reflectivity model using
seismic migration. |/m||« = > o; denotes the nuclear

3
norm, o; is the singular value, and A is a scalar that
controls the trade-off between data fitting and nuclear
norm regularization.

Local low-rank representation

Local low-rank representation applies SVD to a series of
grouped reflectivity patches, which can effectively cap-
ture the nonlocal similarity and local sparsity (Zhang
et al., 2014). The detailed steps of local low-rank repre-
sentation are as follows.

1. The reflectivity model m is divided into a series of
overlapped local patches, i.e., m; (i = 1,2,..., N),
where N is the total number of patches.

2. For each patch m;, the most similar M neighbor-
ing patches are selected from an L x L window

to form a patch group with the elements of g; ;
(G =1,2,..., M).

3. By reshaping the patch g; ; into vectors, we can

construct a matrix m} using these vectors as columns,

ie, mj=[gi1,8i2 8i3 - &Ml
4. We apply SVD to these local reflectivity matrices
as
m; =U;%; V], (4)

where the subscript i denotes the local SVD re-
sult of the ith group of patches.

Similar to the global method, the local low-rank approx-
imation for the reflectivity model can be implemented
by using truncated SVD or nuclear norm minimization.
Since the grouped patches consist of many similar struc-
tures, the local SVD in equation 4 has a better low-rank
property than the global SVD shown in equation 2.

Low-rank regularized LSM

We apply the local low-rank constraint to LSM to im-
prove its adaptability for complex structures, which is
implemented by minimizing the weighted nuclear norm
of reflectivity patch matrices. The corresponding misfit
function can be expressed as

1 2
x = 5 lILm = dops[|” + [[mlw.», (5)
where L denotes the Born modeling in acoustic or vis-
coacoustic media, ||m|w,« = > |[mj|lw,. = > wi joi;
i i
is the weighted nuclear norm, m/ denotes the " ma-
trix constructed from local grouped patches that are ex-
tracted from the expected reflectivity model m as de-
scribed in the low-rank representation section, o;,; is the
4t singular value of m/, and w = [Wi,1, Wi,2, ...y ws, 5] 18
a non-negative weight assigned for o; ;.

The optimization problem with a sparse constraint in
equation 5 can be solved using a two-step algorithm (Yang
et al., 2019). The first step is to solve a traditional least-
squares problem as

1
m; = argmin§|\Lm—dabsH2, (6)

which can be computed by using the preconditioned con-
jugate gradient method. With the solution of mj, the
second step is to solve the following problem

o1
mo = argmin o jm — mu* + . (7)

For each grouped patch matrix, the solution of equa-
tion 7 can be calculated by applying a soft thresholding
to the singular values as

i, = max (0i,; — wi,5,0), (8)
and then the matrix is recovered as
ntl/i :UZZAJZVZ, 21 = diag [&iyl,&i,g,...,&i,j], (9)

where o0; ; is the 4" singular value of the " patch ma-
trix m} extracted from m;i, and U; and V; are the left
and right singular matrices of m}, respectively. Follow-
ing Zha et al. (2017), we choose the weight function as

_2V28?

WwW; = )
Yi + €

(10)

where k is an input parameter to control the strength
of the low-rank constraint, «y; is the estimated standard
variance of the singular values in the ith group, and € is
a small constant to avoid division by zero. The complete
reflectivity model is reconstructed by aggregating all the
group matrices m’ i

NUMERICAL EXAMPLES

We first use the benchmark Marmousi model to test the
feasibility of the proposed method, which is resampled
with a 10-m increment onto a grid of 1943 x 401. 144
sources are evenly deployed on the surface with a 100-m
interval, and each source is recorded by 501 receivers in
a b-km split-spread aperture. The time sample incre-
ment of records is 4 ms and the duration is 4 s. A 12-Hz
Ricker wavelet is used as the source time function. Vis-
coacoustic modeling is employed to compute common-
source gathers, after which random noise is added to
simulate a low signal-to-noise ratio (SNR) dataset. Mi-
gration results and detailed comparisons are shown in
Figures 1-2.

RTM produces good images for shallow reflectors, but
deep layers exhibit much weak amplitudes due to unbal-
anced illumination (Figure la). Through correction of
the Hessian effect, LSRTM enhances deep amplitudes
and improves image resolution, but the inversion pro-
cess aggravates the contamination of random noise (Fig-
ures 1b and 2a, b). This is because LSRTM not only fits



effective reflections but also tries to fit noises. Although
the shaping regularization partially improve the SNR
of shallow layers, the deep image is still seriously de-
graded (Figure 1c¢). Even worse, it may convert random
noise to coherent noise by structural-dependent smooth-
ing (Figures 2c¢, d). TV-regularized LSM removes most
random noise and produces a clearer image than tradi-
tional LSM (Figure 1d). One drawback is that it might
generate speckle artifacts and break event continuity
(Figures 2e and f). In contrast, low-rank regularized
LSM completely removes the adverse influence of ran-
dom noise and produces a high-quality image similar to
the result from clean data (Figures le and 2g, h).

In the second example, we apply the proposed method
to a field data of a land survey. 70 common-shot gath-
ers are recorded along a 2D survey line with an average
source increment of 175 m. Receiver numbers range
from 567 to 706 for different sources, with an average
spacing of 25 m and a maximum offset of 7.11 km. The
time sampling is 2 ms and the record duration is 6 s.
Preprocessings, including direct wave muting, surface
wave attenuation, bad trace removal, amplitude correc-
tion from 3D to 2D and bandpass filtering, are applied
to common-shot gathers before migration. A represen-
tative gathers are shown in Figure 3. Migration results
are presented in Figure 4. On the RTM image, horizon-
tal reflectors are imaged clearly, but deeper reflectors in
the sedimentary basin and its dipping flank are not well
resolved (Figure 4a). With ten iterations, LSRTM sig-
nificantly enhances the amplitudes of the deep reflectors
and improves the image resolution, but it increases the
image noise level (Figure 4b). TV-regularized LSM has
a good denoising performance, but generates some non-
physical speckled artifacts below the basin basement
(Figure 4c). Low-rank regularization removes most ran-
dom noise and does not generate additional artifacts
(Figure 4d). Both shallow fine layers and deep strong
reflectors are imaged clearly, and the basin flank and
basement are well defined.

CONCLUSION

In this study, we introduce a local low-rank constraint
into the LSM framework for reflectivity inversion. A
two-step method is developed to solve the low-rank regu-
larized inverse problem: the first step is for least-squares
data fitting using the preconditioned conjugate gradi-
ent method, and the second step is for minimizing the
weighted nuclear norm using adaptive soft threshold-
ing. Numerical experiments on synthetic and field data
demonstrate that low-rank regularized LSM outperforms
shaping and TV regularizations in improving image SNR
and spatial resolution.
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Figure 1: Migration results of the Marmousi model with
noisy viscoacoustic data (SNR = 1). (a) Preconditioned
viscoacoustic RTM with source illumination, (b) viscoa-
coustic LSM without regularization, (c) viscoacoustic
LSM with shaping regularization, (d) viscoacoustic LSM
with TV regularization, (e) viscoacoustic LSM with low-
rank regularization, and (f) viscoacoustic LSM with low-
rank and shaping regularizations. The signal-to-noise-
ratio of (b)-(f) are 1.72 dB, 2.14 dB, 4.11 dB, 4.42 dB,
3.82 dB, respectively.
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Figure 2: Enlarged local migration results of the Mar-
mousi model with noisy data. (a, c, e, g) are for z=[2.2
km, 5.5 km] and 2=[0.55 km, 2.55 km)], (b, d, f, h) are
for x=[9.5 km, 12.8 km] and 2=[0.8 km, 2.6 km]. Four
rows are LSMs without regularization and with shaping,
TV, and low-rank regularizations, respectively.
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Figure 3: A representative common-source gathers from
the land survey.
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Figure 4: Migration results of field data using an acous-
tic propagator. (a) RTM, (b) LSM without regular-
ization, (c) LSM with shaping regularization, (d) LSM
with TV regularization, (e) LSM with low-rank regular-
ization, and (f) LSM with low-rank and shaping regu-
larizations.



