
Scientific Machine Learning in Geophysical Exploration and Monitoring
Umair bin Waheed*; King Fahd University of Petroleum and Minerals

ABSTRACT

Scientific Machine Learning (SciML) emerges at the conver-
gence of traditional scientific computing and machine learning
(ML), aiming to leverage the rigor of scientific computing with
the adaptability of ML to address shortcomings in data-driven
learning within scientific domains. Unlike traditional ML
models that struggle with limited, noisy data or the incorpo-
ration of scientific knowledge, leading to less reliable or phys-
ically implausible results, SciML integrates physical models
based on scientific laws with ML techniques, offering en-
hanced interpretability, robustness, and generalizability from
limited datasets. This interdisciplinary field has already started
to revolutionize various scientific disciplines, notably improv-
ing computational efficiency and accuracy in fluid mechanics,
materials science, climatology, etc., by incorporating physical
laws into neural networks. A number of advancements have
also been made in recent years in the field of geophysical mod-
eling and inversion using emerging SciML paradigms, includ-
ing physics-informed neural networks (PINNs), Fourier neural
operators (FNOs), and Deep Operator Networks (DeepONets).
These developments offer a new pathway to address longstand-
ing computational challenges in the field of geophysics. We
delve into these strides forward, highlighting the potential im-
pact of such methods and the associated challenges in making
these methods mainstream.

PINNs harness the capacity of deep neural networks to serve
as universal function approximators, uniquely integrating the
governing physical laws, typically represented by partial dif-
ferential equations (PDEs), directly into their learning pro-
cess (Raissi et al., 2019). This integration is achieved through a
specialized training regimen that incorporates both data-driven
loss and physics-based loss. The former assesses the fit be-
tween the model’s predictions and the observed data, while the
latter ensures adherence to the physical principles governing
the system. The resultant model not only aligns with observed
data but also inherently respects the underlying physics, set-
ting PINNs apart with their ability to produce physically con-
sistent solutions, generalize effectively even from sparse data,
and amalgamate different data types.

PINNs have garnered significant attention in geophysics, par-
ticularly in modeling seismic travel times and wavefield solu-
tions through forward solvers for the eikonal and wave equa-
tions (Smith et al., 2020; Alkhalifah et al., 2021). Early ap-
plications demonstrated their potential in surrogate modeling
for fast travel time computation and complex seismic wave-
field modeling across isotropic and anisotropic Earth approx-
imations. However, challenges such as slow convergence due
to neural networks’ spectral bias were identified. Innova-
tions like the sine activation function (Song et al., 2022), fre-
quency scaling with neuron splitting (Huang and Alkhalifah,
2022), and Kronecker Neural Networks (Waheed, 2022) have
been developed to enhance convergence for high-frequency

Figure 1: A physics-informed DeepONet architecture for
learning the wavefield modeling operator consisting of two
subnetworks: the branch net for extracting latent representa-
tions of input functions and the trunk net for extracting latent
representations of input coordinates at which the output func-
tions are evaluated. The wave equation along with simulated
data are used to train the model parameters through a combined
loss function.

features. PINNs have also been pivotal in tackling geophysi-
cal inverse problems, including full waveform inversion (Song
and Alkhalifah, 2021) and travel time tomography (Waheed
et al., 2021), benefiting from the addition of the PDE term in
the loss function as a physics-informed regularizer. Efforts to
improve training efficiency have led to strategies like integrat-
ing the data misfit as a hard constraint (Taufik et al., 2023).
Despite successes in various applications, challenges in gener-
alizability and the need for re-training with changes in model
parameters persist, leading to an interest in neural operators
for mapping between function spaces.

The advent of neural operators in SciML marks a significant
advancement in the construction of surrogate models for phys-
ical systems, offering the potential for near-instantaneous sim-
ulations. This emerging area promises significant advances,
offering the ability to perform simulations quickly for a vari-
ety of applications. Neural operators adeptly learn mappings
within partial differential equation frameworks, facilitating
both data-centric and physics-driven optimizations. FNOs, in
particular, have gained attention thanks to their ability to han-
dle complex, high-dimensional problems more efficiently than
traditional neural networks (Li et al., 2020). Further advance-
ments, such as DeepONets (Lu et al., 2021) and their physics-
informed variants (PI-DeepONets) (Wang et al., 2021), ex-
pand these capabilities, offering real-time prediction and ro-
bustness in modeling complex systems. Despite these strides,
the application of neural operators in geophysics is still in its
infancy. Innovations like Fourier-enhanced DeepONets (Zhu
et al., 2023) and Enriched DeepONets (Haghighat et al., 2024)
underscore the ongoing efforts to achieve higher accuracy and
reliability in geophysical problems. In a similar vein, Figure 1
shows an illustration of a PI-DeepONet architecture that could
be used to learn the wavefield modeling operator.


