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SUMMARY

In image-domain Least-Squares Migration (LSM), a
demigration-migration approach can be employed to identify
non-stationary local filters that approximate the inverse
Hessian operator. Such filters can be subsequently applied
to the original migrated image to compensate for uneven
illumination, undo the effect of geometrical spreading, and
enhance its resolution. A similar approach can be applied at
each iteration of Full Waveform Inversion (FWI) by taking the
FWI gradient as input to the demigration-migration process.
By doing so, a more balanced update can be constructed
whereby both the shallow and deep parts of the model are
updated with similar strength. Following our recent line of
work, we propose here to approximate the effect of the inverse
Hessian with a neural network, which is trained to map the
doubly migrated gradient into the FWI gradient. The trained
network is later applied to the gradient itself to produce an
improved FWI model update. Compared to conventionally
used non-stationary local filters, the network can be trained
only once (at the first FWI iteration) and cheaply fine-tuned
at any subsequent iteration. In this work, we apply the
proposed methodology to a challenging field dataset, namely
the 2010 ocean-bottom cable Volve dataset. As commonly
done in FWI, our approach is naturally embedded into a
multi-scale approach where three different frequency bands
are subsequently inverted and the network used to approxi-
mate the inverse Hessian is re-trained at each outer iteration.
When compared to state-of-the-art quasi-Newton methods,
the model obtained using our approach is shown to produce
images of superior quality and flatter as well as more focused
angle gathers.

INTRODUCTION

Full Waveform Inversion (FWI), (Lailly and Bednar, 1983;
Tarantola, 1984), has gained significant traction over the past
two decades due to its ability to construct high-resolution sub-
surface models by leveraging the information contained in the
full seismic waveform. In comparison, traditional methods for
velocity model building mainly utilize travel times and discard
valuable information contained in the amplitude and phase of
seismic waves. FWI relies on a forward modeling engine to
obtain simulated data from an initial model, which is directly
compared to the observed data. Such a comparison is carried
out using a misfit function such as the ℓ2 norm to calculate an
update for the model. The update includes the first and sec-
ond derivatives of the misfit function with respect to the model
parameters, also known as the gradient and the Hessian, re-
spectively. The inverse of the Hessian scales the gradient to
account for the losses due to geometrical spreading as well as

transmission. Thus, approximating the inverse of the Hessian
can speed up the convergence of FWI and result in an enhanced
inverted model.

Depending on how much computation we can afford, we con-
tent with an approximation of the update ranging from only
using the gradient to including the full Hessian where the lat-
ter is the bottleneck in the computation. One way to include
the inverse Hessian in the FWI update is to approximate it
using second-order methods such as the Gauss-Newton (GS)
method (Pratt et al., 1998), quasi-Newton methods such as the
limited-memory BFGS algorithm (Liu and Nocedal, 1989), or
the truncated-Newton methods (AlTheyab et al., 2013; Métivier
et al., 2014). The inverse of the Hessian, also, plays an impor-
tant role in enhancing seismic images where it can be viewed
as a deblurring operator which can improve the resolution of
migrated images. Due to the linearity of the migration oper-
ator, image processing techniques can be utilized to approxi-
mate the inverse Hessian such as non-stationary matching fil-
ters as done in (Guitton, 2004), deblurring filters (Aoki and
Schuster, 2009), and point spread functions (PSFs) (Valen-
ciano, 2008). Recently, deep learning approaches have been
used to approximate the action of the inverse Hessian in seis-
mic imaging and have been shown to be faster than state-of-
the-art methods (Liu et al., 2022; Kumar et al., 2022; Vascon-
celos et al., 2022).

In our recent work, we showed that the idea of using deep
learning to approximate the inverse Hessian can also be used in
FWI (Alfarhan et al., 2023). We demonstrated the network’s
capability of speeding up the convergence of FWI with syn-
thetic examples. In this work, we assess the validity of our
approach on the Volve field dataset. The Theory section re-
views our proposed method; this is followed by a Numerical
Examples section providing a description of the Volve dataset
and the sequence of pre-processing steps performed prior to
FWI, and presenting the results of our method on this dataset.
Lastly, the Discussion section highlights the advantages and
limitations of our method, and we end with conclusion remarks
in the Conclusion.

THEORY

The FWI model update, as outlined in Equation 1, involves
calculating both the gradient (first derivative) and the Hessian
(second derivative) with respect to the misfit function J relative
to the current model mo.

δm =−
(

∂ 2J(mo)

∂m2

)−1
∂J(mo)

∂m
(1)

Note that whilst any differentiable function can be used in the-
ory, in this work we select the ℓ2 norm. To approximate the
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Figure 1: A depiction of the proposed method.

Hessian, we rely on linearizing the wave equation, which al-
lows us to view the FWI gradient g as the migration of the data
residual ∆d (the difference between the modeled and observed
data) using the adjoint of Born modeling LT :

g = LT
∆d (2)

Furthermore, the residual data ∆d can be expressed as the dem-
igrated Earth perturbation δm through the Born modeling op-
erator L as follows:

∆d = Lδm (3)

Therefore, the combination of equations 2 and 3, as shown in
equation 4, reveals that the FWI gradient, g, is connected to
the Earth perturbation δm through (LT L) or the Hessian.

g = LT Lδm (4)

By applying the Hessian (LT L) to the FWI gradient, we can
obtain another migrated image:

δm1 = LT Lg (5)

Hence, we can consider the FWI gradient, g, and the migrated
image, δm1, to be linked through the inverse Hessian (LT L)−1.
Consequently, using a neural network to learn the mapping
from δm1 to g is approximately equivalent to the inverse Hes-
sian that operates on g to get δm, the full model update in
FWI. As a result, FWI will converge faster, and we can repeat
the same process while leveraging transfer learning to reduce
the training burden of the neural network. Figure 1 illustrates
the proposed method visually.

NUMERICAL EXAMPLES

The Volve oil field, located in the North Sea off the coast of
Norway, was decommissioned in 2016. In 2018, Equinor pub-
licly released the well, production, and seismic data for re-
search and educational purposes. In this work, we aim to apply
the proposed methodology to a 2d line of the ocean-bottom ca-
ble (OBC) dataset composed of 110 sources and 180 receivers

sampled every 50 and 25 m, respectively. Given one of the
key assumptions of our methodology (i.e., Born approxima-
tion), the dataset is initially pre-processed to remove any free-
surface effect. More specifically, the pressure and vertical par-
ticle velocity components are used to obtain the up- and down-
going separated wavefields, which are subsequently used as
input to a step of multi-dimensional deconvolution. As a result
the processed data presents sources and receivers co-located at
the seafloor. We refer to (Ravasi et al., 2015, 2016, 2022) for
a more comprehensive description of these processing steps.
Figure 2 presents a 2D slice of the tomographic velocity model
available as part of the open Volve dataset, highlighting the line
of sources and receivers chosen for this research in red, and its
smoothed counterpart employed as the initial model for FWI.

We compare our approximate method using an approximate
inverse Hessian with two commonly used methods to approxi-
mate the inverse Hessian: the Barzilai-Borwein (BB) (Barzilai
and Borwein, 1988) solver, which is a gradient-based method
and L-BFGS (Liu and Nocedal, 1989) which is a quasi-Newton
method. Given that the inner working of these algorithms is
different (and therefore the number of wave equation solves
used at each iteration may differ) , we decide to use the num-
ber of wave equation solves as ametric to compare the con-
vergence speed of these three methods. Additionally, in all
cases FWI is performed in a multi-scale fashion using a max-
imum frequency of 4, 7, and 10 Hz for the three outer itera-
tions. As shown in Figure 3, L-BFGS lags in speed compared
to the other two approaches and reaches an overall higher data
residual. On the other hand, our method converges slightly
faster than the BB method at both the 4 and 10 Hz scales. Fig-
ure 4 shows the final updated model for the three approaches.
The velocity is overestimated in the shallow and deep parts by
the L-BFGS method, whilst the velocity model from the BB
method has a stronger update in the shallow part compared to
our method final velocity model.

Imaging is further carried out using these three final velocity
models to assess their accuracy against the initial model, which
is a smoothed version of the already highly accurate tomo-
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Figure 2: (a) The tomographic velocity model for Volve data
and (b) its smoothed counterpart. The red line delineates the
arrays of sources and receivers.

graphic model shown in Figure 2. The Reverse Time Migra-
tion (RTM) images using the four velocity models (Figure 5),
show that the inverted model with the BB method produces
an artifact as indicated by the red arrow in the second panel
while the inverted model with L-BFGS (panel (c)) is of over-
all lower quality when compared to the image from the initial
model (panel (a)). In contrast, our method produces a similar
image (panel (d)) to the one obtained with the initial model,
however better continuity and more focused reflectors are ob-
served in the deeper part of the model as indicated by the red
arrows. Lastly, Angle Domain Common Image Gathers (AD-
CIG) computed at x= 6.0 km with the same four velocity mod-
els used to compute the RTM images are shown in Figure 6.
The gather corresponding to our method show similar flatness
as the ones corresponding to the initial model with slight im-
provements (e.g., the one indicated by the red arrow). On the
other hand, the gathers related to the BB method and L-BFGS
curve down as indicated by the red arrows. Therefore, we can
conclude that the inverted model with our approach (and hence
the approximated inverse Hessian) is of better quality than the
other two approaches.

Figure 3: (a) Data loss of running FWI for the BB method and
our method δm while (b) represents L-BFGS.

DISCUSSION

This study introduces an innovative approach to FWI which
incorporates an approximation of the inverse Hessian into a
neural network designed to transform a Hessian-adjusted gra-
dient into the (FWI) gradient. By employing Born modeling
and its adjoint, we integrate the effects of the Gauss-Newton
Hessian into the FWI process, with the neural network ap-
proximating the inverse Hessian to enhance the update vec-
tor at each FWI iteration. We exploit neural networks’ adapt-
ability through transfer learning, given the gradual iteration-
to-iteration changes in the Hessian’s inverse, contrasting with
traditional methods that require repetitive recalculations.

However, our approach has limitations, including an approx-
imation to the FWI Hessian that may not accelerate conver-
gence as effectively as the true inverse, and a training process
that does not guarantee extension of the frequency content be-
yond the training data. Additionally, this method introduces
computational demands due to extra modeling-migration steps
and network training or fine-tuning at each FWI iteration.

Application to the Volve field dataset demonstrated faster or
comparable convergence rates to the BB method and improved
model quality. The method is most effective with low fre-
quency data and can be adapted for multi-scale FWI by retrain-
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Figure 4: Inverted models: (a) using the BB method, (b) using L-BFGS, and (c) using our method.

Figure 5: RTM images obtained with: (a) the initial model, (b) the inverted model using the BB method, (c) the inverted model
using L-BFGS, and (d) the inverted model using our method.

Figure 6: ADCIG obtained at x = 6.0 km with: (a) the initial
model, (b) the inverted model using the BB method, (c) the in-
verted model using L-BFGS, and (d) the inverted model using
our method.

ing the network for each frequency band. Despite the initial
computational cost, this inverse Hessian approximation can
guide early FWI iterations towards better optimization, offer-
ing a practical and cost-effective strategy for enhancing FWI

performance.

CONCLUSION

We introduced a deep learning strategy for estimating the in-
verse Hessian within FWI. This technique involves generat-
ing a remigrated image connected to the gradient via the in-
verse Hessian, utilizing Born modeling and its adjoint. A neu-
ral network is subsequently trained to identify the transforma-
tion from the remigrated image to the gradient, which, when
applied to the gradient, increases its resolution and corrects
for illumination discrepancies. Our numerical analyses on the
Volve field data demonstrate that gradients refined in this man-
ner contribute to an FWI process characterized by more robust
convergence and enhanced quality of the inverted model.
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