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SUMMARY

Geological structures are typically analyzed using a multi-
parameter model (MPM). However, current methods such as
multi-parameter full waveform inversion face challenges in
accurately determining MPM due to complex inter-parameter
crosstalks in the elastic wave equation. To solve this problem,
a self-supervised geophysical subsurface imaging approach
(SS-GSI) is proposed to leverage multiple independent deep
learning networks to predict the MPM based on the migra-
tion images and prior models. As a self-supervised learning
procedure, the target-oriented datasets are iteratively created
by randomly perturbing the inverted models and paired with
their migrated images as pseudo-labels. This approach does
not require a large number of training samples as in super-
vised learning algorithms. An important feature of SS-GSI is
that the misfit function is independent of seismic data resid-
uals. The data misfit serves only as a validation metric for
the accuracy of its predictions. This feature makes SS-GSI
immune from crosstalks in multi-parameter inversions. Re-
sults from synthetic elastic and anisotropic model simulations
demonstrate that SS-GSI outperforms the current state-of-the-
art elastic full waveform inversions, providing highly precise
and detailed MPM results.

INTRODUCTION

Full-waveform inversion (FWI) (Tarantola, 1986) is capable
of generating high-resolution subsurface models by matching
predicted seismic data to observed seismic data. However,
multi-parameter elastic FWI (EFWI) is usually ill-posed be-
cause of the coupling effects between different types of param-
eters (Virieux and Operto, 2009). Typically, mitigating inter-
parameter coupling involves either a hierarchical approach (es-
timating each type of parameter sequentially) (Prieux et al.,
2013; Ren and Liu, 2016), or sophisticated optimization meth-
ods that require a true or approximated Hessian (Métivier et al.,
2013; Pan et al., 2017).

Deep learning has been widely applied in predicting subsur-
face models from multiple perspectives. One way is to use
supervised deep learning to predict subsurface models from
observed seismic data (Araya-Polo et al., 2018), or migration
images (Zhang and Gao, 2021) in an end-to-end manner. This
type of methods usually suffers from low generalization abil-
ity which makes it impractical in real and complicated models.
Deep learning can also be applied as a function approximator
to re-parameterize the known starting subsurface model to cap-
ture the salient features. (Wu and McMechan, 2018, 2019; Zhu
et al., 2020; He and Wang, 2021). However, this deep-learning
application still requires a seismic data-fitting procedure to up-
date a subsurface model, so it cannot tackle the inter-parameter

coupling issues in multi-parameter inversion.

Adaptive feedback CNN-based reflection-waveform inversion
(CNN-RWI) (Wu et al., 2021, 2022) predicts the subsurface
velocity model from an initial velocity model and the corre-
sponding migration image. The CNN-RWI is classified as self-
supervised deep learning, since it iteratively recreates a small
set of velocity models as pseudo-labels from the prior velocity
model, without the need for massive highly-representative ve-
locity models as in supervised deep learning. As iterations pro-
ceed, the velocity models for training (the pseudo-labels) be-
come more representatives, making the CNN prediction more
accurate. Inspired by CNN-RWI, we propose self-supervised
geophysical subsurface imaging (SS-GSI) to apply mutually
independent CNNs to predict MPM, from their initial MPM
and the corresponding migration images. Synthetic examples
of elastic and anisotropic models illustrate four advantages of
the SS-GSI.

THEORY

The workflows of the multi-parameter EFWI and the SS-GSI
(Fig. 1) demonstrate synthetic examples for a portion of the
Sigsbee elastic model. Both the multi-parameter EFWI and
the SS-GSI require observed data (Step 1 in Fig. 1A and 1B,
respectively) and the original starting MPM (Step 2 in Fig. 1A
and 1B, respectively), as prerequisites for inversion, but for
different purposes. The conventional multi-parameter EFWI
(Fig. 1A) requires the starting MPM, at the first iteration, to
calculate the data residuals and misfits (Step 4 in Fig. 1A) be-
tween the predicted data (Step 3 in Fig. 1A) and the observed
data (Step 1 in Fig. 1A). Then the multi-parameter gradients,
derived from the starting MPM and the data residuals (Step 5
in Fig. 1A), are applied to update the starting MPM (Step 6
in Fig. 1A), to reduce the data residuals and misfits (Step 4 in
Fig. 1A) for the next iteration. In the following iterations, the
MPM is iteratively updated to gradually reduce the data misfits
(Steps 3-6 in Fig. 1A).

For the SS-GSI (Fig. 1B), the observed data are input to the
reverse-time migration (RTM) (Baysal et al., 1983; McMechan,
1983; Whitmore, 1983) to estimate the original migration im-
ages from the original starting MPM (Step 3 in Fig. 1B). The
original starting MPM contains the prior (low-wavenumber)
background multi-parameter information whereas the original
migration images contain the prior (high-wavenumber) spatial
information of the interfaces and reflectors. Both the original
starting MPM and the original migration images are input to
the mutually independent deep learning models (DL models)
(e.g., the workflow in Fig. 1B) to predict the unknown true
MPM (Step 4 in Fig. 1B). This CNN prediction step is similar
to an end-to-end prediction in most supervised Deep learning
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Figure 1: EFWI and SS-GSI pipelines demonstrated by synthetic results on a portion of the Sigsbee elastic model. The arrows
with different colors denote the different steps in the pipelines. Each step involves different prerequisites (attached to the ends of
the arrows) to generate the products (attached to the heads of the arrows). (A) is the pipeline of the EFWI. (B) is the pipeline of
the SS-GSI. The observed seismic data are obtained from the true Sigsbee elastic model via elastodynamic equations. The elastic
models (indicated by the ’Step 2’ arrows) in (A) and (B) are the original starting elastic models. The elastic gradients in (A) are
the sums of the weighted gradients at each iteration. The predicted true and training elastic models in (B) are the CNN-predicted
elastic model and one of thirty-two training elastic models at the last iteration, respectively.



applications (Araya-Polo et al., 2018; Lin and Wu, 2018; Yang
and Ma, 2019; Wang and Ma, 2020; Zhang and Gao, 2021).
The accuracy of the DL models-predicted MPM, evaluated in
terms of the data errors (Steps 5 and 6 in Fig. 1B), is used as
convergence criteria.
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Figure 2: Comparison of the isotropic elastic inversion results
on Dataset 1.

CNN architectures
There is no golden rule for the selection of deep learning mod-
els for the SS-GSI. Any empirically successful deep learning
architecture for image generation and reconstruction, such as
the U-Net (Ronneberger et al., 2015), ResNet (He et al., 2016),
and so on, can be utilized in SS-GSI to predict the parameter
models. As the deep learning models are mutually indepen-
dent, the architectures of the CNNs could be different, pro-
vided that they can fit the training MPM sufficiently accurately.
Here, we utilize three mutually independent U-Nets with the
same architectures for training and prediction. The architec-
ture of each U-Nets closely resembles the one employed in
(Wu et al., 2022), with the only distinction being that the input
layer of each U-Nets consists of two components of migration
images and an initial parameter model.

Figure 3: Comparisons of the root-mean-square (RMS) errors
of model and data on Dataset 1. The magenta and black lines
correspond to the EFWI and SS-GSI methods, respectively,
using the initial isotropic elastic models (Fig. 2d-2f) as the
starting elastic model. The cyan dots in (a)-(c) correspond to
the RMS model errors of the thirty-two training elastic models
in the SS-GSI, at each iteration. The blue lines are the EFWI
in Pass 2, by using the SS-GSI-inverted elastic models (Fig.
2g-2i) as the starting isotropic elastic models.
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Figure 4: Comparisons of the VTI elastic inversion results on
Dataset 2.



SYNTHETIC DATA EXAMPLES

To illustrate the performance of the SS-GSI, an Adam opti-
mization based EFWI (Wang et al., 2021) is compared with
the SS-GSI. Inversions are performed and compared on one
isotropic elastic model and one anisotropic (VTI) elastic model.
The vertical and horizontal extents of the models are 3.2 km,
both with a 0.0125 km spatial sampling increment. To simulate
the observed data, 25 explosive, Ricker-wavelet sources with a
dominant frequency of 20 Hz are spaced every 0.125 km, and
256 receivers are spaced every 0.0125 km. All sources and re-
ceivers are at the upper surface. The recording time is 4 s with
a 1.0 ms time sampling increment.

Dataset 1: Synthetic tests on the Sigsbee elastic model
The first test is performed on a portion of the Sigsbee isotropic
elastic model (Fig. 2) with three parameters to be inverted (P-
and S-wave velocity and density). Three inversion results are
compared in Fig. 2 and 3. (1) The SS-GSI results after 10 iter-
ations (Fig. 2g-2i); (2) the EFWI result after 20 iterations (Fig.
2j-2l). Both (1) and (2) are initiated by elastic models (Fig.
2d-2f) as the starting models. (3) the elastic models inverted
by the EFWI, after 10 iterations, by using the SS-GSI-inverted
elastic models (Fig. 2g-2i) as the starting elastic models, as a
second pass (P2). Fig. 2 show that the SS-GSI better estimates
the elastic models (Fig. 2g-2i) than the EFWI (Fig. 2j-2l) with
clearly described formation interfaces.

Dataset 2: Synthetic tests on the Hess anisotropic VTI
model
The second test is performed on the Hess anisotropic VTI model
with five parameters to be inverted: vertical P- and S-wave ve-
locities, density, NMO P-wave velocity and horizontal P-wave
velocity. Fig. 4 shows that the SS-GSI inverts for both the
salt body and the sediment layers below the salt body much
more accurately than the EFWI does. Because of the high-
contrast impedance on the upper and lower boundaries of the
salt body, the top surface of the salt body reflects the major-
ity of the energy of the down-going incident waves. Besides,
the down-going incident waves transmitted into the salt body
create multiple reflections (i.e., multiple reflections created at
the upper and lower boundaries of the salt body because of the
high-contrast impedance). Matching these complicated multi-
ple reflections is difficult for the EFWI. Therefore, the EFWI
cannot invert for the salt body and the regions below it accu-
rately.

In Figures 3 and 5, we compare the model and data errors
of SS-GSI and the EFWI results. The EFWI-inverted veloc-
ity models have larger errors than SS-GSI-inverted velocity
models, partly because EFWI cannot effectively invert for the
deeper model by fitting observed reflected data (Yao et al.,
2020). In addition, the density errors of EFWI results increase
rather than decrease, partly because of the inter-parameter cou-
pling relations, inaccuracy of velocity models, and insensitiv-
ity of the density model to the traveltime errors. The model
and data errors of the SS-GSI converge to a much lower error
level since the mutually independent CNNs adaptively learn
to extract and map the features from the migration image (the
high-wavenumber interfaces) and from the initial MPM (the
low-wavenumber background) to the unknown true MPM. The

Figure 5: Comparisons of the model and data errors of the Hess
VTI model on Dataset 2. The black and red lines correspond
to the EFWI and the SS-GSI, using the initial VTI model (in
the second column in Fig. 4) as the starting VTI model. The
cyan dots in panels (a)-(e) correspond to the RMS model errors
of the thirty-two training VTI model, in the SS-GSI, at each
iteration.

fluctuation of the data error in accordance with errors of the
MPM predicted by the SS-GSI indicates that data errors serve
as validation tools for assessing model accuracy since SS-GSI
did not minimize the data residuals in a data misfit function.

CONCLUSIONS

The self-supervised geophysical subsurface imaging method
(SS-GSI), introduced in this study, effectively addresses the
cross-talk issue associated with multi-parameter inversion for
two key reasons. Firstly, SS-GSI systematically alleviates sam-
pling biases within the training dataset by dynamically gen-
erating an improved training dataset based on the predicted
multi-parameter model (MPM). This reduction in sampling bias
contributes to more precise predictions. Secondly, each CNN
within SS-GSI learns a decoupled mapping from the shared
migration images and its assigned initial parameter model to
the corresponding true parameter model during the training
phase. In contrast, multi-parameter EFWI updates the MPM
using gradients contaminated by inter-parameter cross-talks from
inaccurate MPM obtained at the previous iteration. Synthetic
examples on both elastic (Dataset 1) and anisotropic (Dataset
2) models illustrate that SS-GSI effectively mitigates cross-
talk issues, resulting in better predictions of MPM compared
to multi-parameter EFWIs.
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