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SUMMARY

The effective null-space (all the models that produce an equal
or smaller misfit) of the full waveform inversion objective
function can be quite large. Once the inversion converges there
are many models that yield a similar fit. In the context of 4D
FWI, this space is even bigger. The shuttling technology al-
lows us to navigate the null-space to find models with equal or
better fit that follow a secondary goal (i.e., minimizing the 4D
model difference). In this abstract, we show a way to imple-
ment the 4D shuttling algorithm with two different goals and
an application to a Gulf of Mexico dataset.

INTRODUCTION

Historically, seismic time-lapse monitoring has been an imaging-
based workflow that involves careful and closely co-located
acquisition, water velocity corrections, and careful seismic pro-

cessing. The pre-processing is usually followed by high-resolution

imaging (usually reverse time migration) which is followed by

post-processing (image registration and cross-equalization). With

more robust full waveform inversion (FWI) algorithms together
with computational advances, we have been pushing subsur-
face velocity models to high frequencies (Shen et al., 2018)

which in turn has enabled FWI-derived reflectivity (FDR) (Zhang

et al., 2020)—a byproduct of the velocity inversion process.
This approach can transform how we think about 4D process-
ing projects altogether.

Here, we present a FWI-based workflow that is implemented
after the inversion is driven to convergence. The method is
derived from Keating and Innanen (2021) and shows a way to
navigate the complex 4D inversion null-space and interrogate
it in two different ways. We show how the retrieved models
can preserve the data fit while driving the models to interesting
places. On one hand, we can drive the difference down to un-
intuitively low NRMS using the model difference as shuttling
goal. On the other hand, we can exaggerate the 4D response
while also preserving the data-fit for both baseline and monitor
surveys. This abstract is organized as follows: we first present
the reference 4D FWI workflow (which we run before the shut-
tling step), we then explain our shuttling workflow, and finally,
we present an application to a 4D dataset from Atlantis field,
Gulf of Mexico.

THEORY

Here we explain the aspects of our 4D workflows, starting with
the benchmark 4D FWI algorithm: let m;, and m,, be the base-
line and monitor models, and d; and d,, the corresponding
data for baseline and monitor surveys, respectively. We can
combine both models and data in a joint minimization goal as

follows:
J(my,my,) =||.Z (my) — dy||5+

) (1)
[|-7 (my) — dy|5 + ER(mMy, myy, ),

where .Z is a wave equation modeling operator sampling the
wavefield at the receiver locations, R is a regularization goal
that imposes some constraints on the relationship between base-
line and monitor models, and € it is a scalar that controls the
relative weight between the joint regularization goal and the
data fitting goals. In practice, we use the L-curve regulariza-
tion criteria to choose the optimal € value for our benchmark
inversions.

Null space shuttling for 4D

(Keating and Innanen, 2022) expands the shuttling algorithm
(Keating and Innanen, 2021) to explore the uncertainty in the
4D FWI problem. Here, we modify the update direction for the
shuttling problem and define a new shuttling goal that can be
useful for 4D imaging. Nullspace shuttling can be defined as
the problem that seeks to minimize a secondary goal F; under
the constraint that the primary optimization goal F), remains at
a lower or equal value through each iteration:

min F (ml)
m; )
st Fy(my) <F,(m;_p)

where m;_; sets the reference function contour Fj, (mg). We
assume that the primary problem F), has been previously opti-
mized to convergence.

To satisfy both goals, we need to update the model along a
direction that minimizes both F), and Fj:

Au=—8gp—8s. 3)
Where ¢ = g/ ||g||, is the normalized gradient.

This mixing produces an update direction that can minimize
both functions within a given range of suitable steplength .
Once the update direction Au is constructed, the remaining step
is to find the step to properly scale it. Thus, creating the fol-
lowing scalar optimization sub-problem:

H(lxi_n Fy (m_1 + 0;Au)

C))
st. Fp (m;_| + oAu) < Fy (m;_)

The secondary optimization goal is often less computationally
involved compared to the primary goal. Using the chain rule,
the gradient of Fy w.r.t. o is:
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With this gradient, we can go ahead and optimize the sec-
ondary goal F; for alpha to find a,p;. Once we found it, we
only need to re-scale it such that we meet the constraint

Fp (m_y + 0Au) < Fp (my_y) (6)



To do so, we only need function evaluations for the primary
and more expensive goal F), within the range 0 < o < 0.

How to choose the secondary function F;?
An intuitive function would be to minimize the distance be-
tween the model and the reference model:

Fy=||m—my||3. (7

We can call this strategy “minimum shuttle”. As mentioned
before, during a 4D shuttling the baseline becomes the refer-
ence while we shuttle the monitor, and then we flip it and the
monitor becomes the reference while we shuttle the baseline
model. One can imagine if both objective functions have sim-
ilar contours with considerable overlap there is the possibility
of ending up with zero distance between baseline and monitor
models while maintaining (or improving) the data misfit for
both datasets.

Other goals could be entertained as well, for instance, one
could find the maximum distance that still maintains accept-
able data fit by minimizing the negative of equation 7. Al-
ternatively, we can also mix these two goals, by minimizing
away from the area of interest and maximizing the 4D response
around the reservoir. This could can be thought of as using a
magnifier. A goal that tackles both objectives is:

Fy=|[K (m—mp)|[5~ || 0= K) (m—my)|[5. (8

In this “dual shuttle” goal, we use the mask K to highlight
the places where we want to minimize and I — K to highlight
the places where we want to maximize the distance. Note that
this goal will go negative when the second term takes over the
inversion.

Solving a toy problem

We present a toy problem that solves equation 2. The primary
optimization goal is given by a two-dimensional rotated Gaus-
sian function:

(=) (/=)

Fy(x,y)=1—e¢ 2 207 )

where X' = (x—x,)c0s(0) — (y— ) sin(0),y = (x—x,)sin(0) +

(y—yo)cos(0), x,, =x,cos(0) —y, sin(0), and y,, = x, sin(6) +
Yocos(6). For this problem, we use x,,y, = 0.0,0.0 and 6 =
/4.

We use the “minimum shuttle” as a secondary objective:
Fs(x,y) = (x=x)>+ (=) (10)
In this example, the reference point is x,,y, = —1.5,1.5.

Figure 1 shows how we minimize the model (moving it to the
center of the Gaussian) while also minimizing the distance to
the reference point (the dashed line is a reference for the min-
imum distance path). Note that any point along the segment
that connects the reference point, the center of the Gaussian,
and it has a lower value of the initial contour will satisfy our
constraints. Where we fall in along this segment depends on
some of our optimization choices. In practice, in the context
of 4D FWI, we alternate between baseline and monitor models
to set them as a reference and take one or only a few shuttling
steps while immediately changing the reference model. Alter-
nating between the two vintages allows us to quickly converge.
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Figure 1: Toy problem setup: the black dot shows a hypothet-
ical final model driven to convergence (and the starting point
for the shuttling iterations), the path shows all the models after
each shuttling step. The black cross is the reference to which
we are minimizing the distance while preserving or improv-
ing the convergence. The dashed line connects the reference
model with (x,y) = (0,0) which is the lowest point in the func-
tion.

ATLANTIS 4D EXAMPLE

We run a 4D example from the Atlantis field, Gulf of Mexico.
Our 4D data consists of two vintages: one from 2005 and one
from 2022. The first step is to run the benchmark workflow
(joint FWI with regularization constraints) as explained in the
previous section. The velocity models were optimized jointly
until convergence. For assessing the 4D signal, we take a look
at the FDR difference.

Figure 2a shows a section through the Atlantis model for the
FDR difference volume. For the shuttling approach, we per-
form six shuttling steps (three for the base model and three
for the monitor model) using the minimization approach and
the dual approach. Figure 2b shows the 4D response on the
FDR volumes using the minimization goal. Finally, Figure 2c
shows the 4D response on the FDR volumes using the dual ap-
proach. An important observation from these sections is how
different the 4D FDR amplitude response is. To gain more in-
sights about such amplitude range, let’s take a look at the opti-
mization history from the shuttling exercises. Figure 3a shows
the shuttling goal optimization for both minimization and dual
goals. One can see how our algorithm was able to achieve
what we set as a goal. Figure 3b shows the FWI objective func-
tions (F),) for both base and monitor models, and both shuttling
runs (minimization and dual goals). We can observe how the
FWI goal was further optimized for both shuttling runs and
yet the 4D FDR response yields dramatically different mod-
els. This observation gives us an insight into how the topology
of both FWI functions (baseline and monitor) perhaps have a
great overlap. Hence, there are many combinations of mod-
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Figure 2: Zoom through the 4D anomaly on the FDR difference volumes for (a) reference 4D, (b) minimum shuttle distance, and

(c) dual shuttle distance. Note the difference in the amplitude scale.
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Figure 3: Shuttling convergence (a) Secondary goal conver-
gence for both distance minimization and distance maximiza-
tion goals and (b) Primary goal decrease for shuttling ap-
proaches and both vintages (baseline and monitor).

els that are equally or more feasible than the final model from
conventional FWI optimization. The shuttling algorithm gives
us the possibility to explore this vast space of models given an
input goal.

Another way to look at the 4D response is by doing windowed
attribute extractions. Figure 4a shows the average amplitude
attribute for the benchmark 4D FDR extracted along a 60-
sample window around the horizon. Figure 4b shows the cor-
responding NRMS attribute for the benchmark models. Fig-
ures 4c-4d show the equivalent extractions for the minimiza-
tion shuttling goal, and finally Figures 4e-4f show the same
extractions for the dual shuttling approach. One can see that
we can use the shuttling framework to drive the NRMS almost
to zero in the case of minimization, or also we can use it to
maximize or exaggerate the 4D response.

CONCLUSIONS

We have presented an alternative algorithm for 4D null-space
shuttling that is equivalent in cost to running a few FWI iter-
ations after the conventional optimization step is finished for
both baseline and monitor. Through shuttling, we can gain in-
sights into how reliable a 4D signal is and what is the overlap
between the baseline and monitor objective functions in the
model space. If there is a considerable overlap, it is possible
to drive the NRMS attribute to very low levels (a fraction of a
percent). At the same time, it is possible to drive the 4D sig-
nal to unreasonably high responses. These two scenarios can
be achieved while driving the primary goals (the FWI objec-
tive functions for baseline and monitor) to lower values (better
data fit). It is important to highlight that the method described
in this abstract is independent of the chosen FWI flavor, it can
give us more information about the function landscape of ei-
ther acoustic or elastic FWI objective functions.
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Figure 4: Attribute extraction along a 60 sample window of the FDR difference. The left column (a), (c), and (e) shows the average
difference attribute whereas the right column (b), (d), and (f) show the NRMS attribute for the benchmark, shuttling minimum, and
shuttling maximum distance, respectively.



