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SUMMARY

The concept of neural network (NN)-based seismic resolution
enhancement has gained a lot of traction recently. Yet, the
majority of work rely on training NNs on synthetic data via
a supervised learning strategy, often encountering generaliza-
tion issues on real data. To address this problem, we develop
a self-supervised learning method for seismic resolution en-
hancement. Specifically, we reinterpret seismic resolution en-
hancement as a frequency extension task, particularly focusing
on the reconstruction of high-frequency components. Initially,
we warm up the NN using the original bandwidth-limited data
as pseudo labels, with input data derived by filtering out high-
frequency elements from the original data. Subsequently, the
network undergoes iterative data refinement, where pseudo la-
bels are predicted from the NN trained in the previous epoch
on the original data, and input data are obtained by filtering
high-frequency components from these predictions. The ef-
ficacy of our method is demonstrated through tests on both
synthetic and field data.

INTRODUCTION

Seismic high-resolution images are crucial for accurately map-
ping subsurface structures and characterizing complex geolog-
ical targets. However, due to the filtering effects of geolog-
ical layers, noise, and limitations of seismic acquisition, the
recorded seismic data are often bandwidth-limited, resulting
in lower resolution. Therefore, effectively enhancing seismic
resolution represents a significant challenge to address.

In the realm of conventional methods, numerous techniques
have been developed to enhance seismic resolution. The least
squares deconvolution (LSD) stands out as one of the most
classic approaches, working to recover high-frequency content
by minimizing the discrepancy between real seismic data and
model predictions (Berkhout, 1977). While it can stably esti-
mate high-frequency information, its capacity to enhance reso-
lution is limited and it remains sensitive to noise. Alternatively,
some studies have presented sparse spike inversion (SSI) tech-
niques to extend the high-frequency in seismic data (Sacchi,
1997; Gholami and Sacchi, 2012). Typically, SSI assumes that
the subsurface reflectivity consists of a sequence of discrete re-
flection spikes, and the objective is to use the minimal number
of wavelet-convolved reflection spikes to simulate a seismic
trace. It was initially applied on a trace-by-trace basis, result-
ing in some limitations in spatial continuity of the processing
results. Consequently, further research resulted in multi-trace
methods, thus offering a more stable high-resolution recon-
struction product. Although SSI can improve seismic reso-
lution, it shares a common limitation with LSD: the need to
accurately estimating the seismic wavelet. However, the esti-

mation of seismic wavelets for real data is often hard.

With the rapid development of deep learning algorithms in the
field of seismic processing (Cheng et al., 2023b), some re-
searchers have introduced techniques for enhancing seismic
resolution based on neural networks (NNs) (Li et al., 2021;
Gao et al., 2022). The key concept of this technology is to
train an NN to approximate the nonlinear relationship between
low-resolution and high-resolution data. Most efforts involve
training a neural network on synthetic data using a supervised
learning paradigm, which is then applied to enhance the res-
olution of field data. However, due to the difference in fea-
ture distribution between synthetic and field data, NNs trained
on synthetic data often face generalization issues. To bridge
the gap between synthetic and field data, Zhang et al. (2022)
introduced a domain adaptation (DA) algorithm, inspired by
MLReal (Alkhalifah et al., 2021), to transform synthetic and
field data to have similar features (distributions). However, this
DA algorithm might eliminate some characteristics of seismic
data, such as phase, during the transformation process.

Therefore, a better alternative is to directly train training on
field data, and thus, enable the NN to learn frequency char-
acteristics directly from seismic data, thereby contributing to
the resolution enhancement in field data. To the best of our
knowledge, we have found only two contributions utilizing
self-supervised learning (SSL) methods for seismic resolution
enhancement. Chai et al. (2023) incorporated the convolu-
tional model into the loss function in a self-supervised manner
to constrain the network’s predicted outcomes to match ob-
servational data. Similarly, Wang et al. (2023) integrated the
Robinson convolutional model into the loss function to pro-
vide physical constraints, while also incorporating structural
and sparsity constraints to train the NN in an SSL manner. Al-
though the performances of both methods were validated on
field data, they rely on estimating a relatively accurate wavelet,
as they both incorporate convolutional models into the loss
function.

In this abstract, we propose a novel SSL seismic resolution en-
hancement method that does not rely on wavelet estimation.
As previously mentioned, a critical component of resolution
enhancement is the extension of the frequency band informa-
tion in seismic data. Thus, in our approach, we reinterpret seis-
mic resolution enhancement as a problem of high-frequency
extension. We rely on an iterative refinement mechanism to
learn the data as we elevate the frequency. Furthermore, we
present a multi-loss constraint to stabilize the network training
and enhance its performance. We will demonstrate the effec-
tiveness of our method on both synthetic and field data.
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METHOD

Our framework principally consists of two stages: a warm-
up and an iterative data refinement (IDR) phases. The whole
workflow is illustrated in Figure 1. In the following, we will
elucidate the key components therein.

Figure 1: An illustration of the self-supervised seismic resolu-
tion enhancement workflow.

Firstly, the NN undergoes a warm-up phase. We first apply
a low-pass filter to the original seismic data {xi}N

i=1, which
is assumed already to be of low-resolution with a limited fre-
quency band, thereby creating a training dataset {F[xi],xi}N

i=1
(we call lesshigh-high (LH2H)). In which, the original data
become pseudo-labels, and the filtered results are input data.
Subsequently, the NN is subjected to multiple epochs of op-
timization on this dataset. The objective of this training is to
enable rapid stabilization of the NN, allowing it to preliminar-
ily capture the characteristics of seismic data. Furthermore,
this pre-trained network, denoted as NNw, has a certain degree
of high-frequency extension ability with respect to the origi-
nal seismic data. This capability forms the groundwork for the
iterative refinement of the training set in subsequent stages.

Subsequently, the NN enters the IDR phase. In this stage, we
first leverage the pre-trained network NNw to predict the orig-
inal seismic data. The predictions serve as the initial pseudo-
labels for the IDR phase, with corresponding inputs derived
from applying a low-pass filter to these predictions. This pro-
cedure facilitates the creation of a new LH2H dataset, em-
ployed for the first epoch of training during the IDR stage:

NN0←{(F[NNw(xi)], NNw(xi))}N
i=1, (1)

where the network NN0 is directly initialized from the per-
trained network NNw.

We anticipate that after training for one epoch on the new
training set, the high-frequency extension capability of NN0
will slightly surpass that of NNw. This improvement is at-
tributed to the fact that, compared to the LH2H dataset used
during the warm-up phase, the new LH2H dataset exhibits
higher frequency representation in the labels. During the sub-
sequent training, we iteratively perform this process to pro-
gressively diminish the frequency information bias between
the predicted pseudo label and the broad band ground-truth
data. Specifically, for each training epoch, we first employ
the network trained in the previous epoch (e.g., NN j−1) to pre-
dict the original data {xi}N

i=1, and thus, obtain the frequency-
extended pseudo-labels {NN j−1(xi)}N

i=1. Then, we apply a low-
pass filter to these pseudo-labels to generate the corresponding

input data {F[NN j−1(xi)]}N
i=1. The resulting LH2H training set

{(F[NN j−1(xi)], NN j−1(xi))}N
i=1 will optimize the network NN j

for one epoch, for example,

NN j←{(F[NN j−1(xi)], NN j−1(xi))}N
i=1. (2)

After conducting multiple epochs of training in the IDR phase,
our network incrementally enhances its high-frequency exten-
sion capabilities.

During the training process, we use a hybrid loss function to
co-optimize the network. This hybrid loss function consists
of a data loss Ld , a focal frequency loss L f , and a sparsity-
promotion loss Ls. The data loss measures the difference be-
tween the NN’s outputs Oi, i = 1, · · ·,N and the corresponding
pseudo-labels Li, i = 1, · · ·,N, using the mean absolute error
(MAE) as follows:

Ld (L,O) =
1
N

N∑
i=1

|Li−Oi|. (3)

The focal frequency loss L f , which is developed by Jiang et al.
(2021), allows an NN to adaptively focus on frequency com-
ponents that are hard to represent by down-weighting the easy
ones. It can adaptively emphasize the loss weight of the high-
frequency components, and thus, mitigate the network’s low-
frequency bias characteristic. The loss L f has the form:

L f (L,O) =
1
N

N∑
i=1

∣∣L̃i− Õi
∣∣ · ∣∣L̃i− Õi

∣∣2, (4)

where the L̃i and Õi represent the the spatial frequency spec-
trum for the pseudo-labels and network outputs, respectively.
The sparsity-promotion loss can be expressed as follows:

Ld (O) =
1
N

N∑
i=1

|Oi|. (5)

The total loss function is defined as

L (L,O) = Ld (L,O)+ ε1 ·L f (L,O)+ ε2 ·Ls (L,O) , (6)

where ε1 and ε2 are hyperparameters, which are used to regu-
late the proportion of the focal frequency and sparsity-promotion
losses within the total loss.

NUMERICAL EXAMPLES

To verify the efficacy of the proposed algorithm, we first use
synthetic data generated with the Marmousi model to perform
the tests. The modified model has 2650 traces and 934 sam-
pling points with a time interval of 1.0 ms. We generate syn-
thetic seismic data by convolving the reflectivity of the Mar-
mousi model with a Ricker wavelet of 20 Hz peak frequency,
which we consider as the original bandwidth-limited low-resolution
data and is shown in Figure 2a. From the generated low-
resolution data, we extract a total of 2236 data patches, each
sized 128×128. During the warm-up phase, we randomly fil-
ter out frequency components higher than 20 ∼ 40 Hz from
the original data to generate the input data. As previously de-
scribed, the pseudo-label data at this time are the original ob-
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served data. In the IDR phase, the low-pass filter cutoff fre-
quency range is still set between 20 ∼ 40 Hz. Within this fre-
quency range, we randomly filter out the high frequencies from
the pseudo-label data predicted by the network trained in the
previous epoch, which serve as the input data. The network
is trained for a total of 120 epochs, with the warm-up phase
accounting for 20 epochs. We chose a learning rate of 2e-4 at
the start, and then decrease by a factor of 0.8 at the 15, 30, and
60 epochs.

0 500 1000 1500 2000 2500
Trace

0.0

2.0

4.0

6.0

8.0

Ti
m

e 
(s

)

a)

0 500 1000 1500 2000 2500
Trace

0.0

2.0

4.0

6.0

8.0

Ti
m

e 
(s

)

b)

Figure 2: (a) The original low-resolution synthetic data. (b)
The high-resolution prediction on the original synthetic data
using our framework.

The prediction result of the raw data, derived from the net-
work trained using our framework, is illustrated in Figure 2b.
We can see that our method can significantly enhance the res-
olution of raw seismic data. As a result, it can offer a more
refined characterization of subsurface structures. To present
a more detailed comparison, a zoomed-in section of interest
marked by the red boxes is shown in Figure 3. It is evident
that our method delivers a high-resolution predictive output
closely resembling the reflectivity model. To clearly verify
the performance of the proposed algorithm in reconstructing
the high-frequency components, we perform a spectral analy-
sis between the original and predicted data, which is displayed
in Figure 4. We emphasize that the amplitude spectrum repre-
sents the average value obtained after summing the amplitude
spectrum of all traces. We can see that the amplitude spectrum
of predicted data exhibits a good frequency extension after ap-
plying the proposed algorithm. In the low-frequency range,
such as 0 ∼ 40 Hz, the amplitude spectrum of the prediction
result and the original data generally align, indicating that we
did not compromise the low-frequency information while ex-
panding the high-frequency components. Therefore, the re-

sults demonstrate the accuracy, stability and effectiveness of
the proposed SSL seismic resolution enhancement algorithm.
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Figure 3: Zoomed-in view corresponding to the red box areas
in Figure 2: (a) The original low-resolution synthetic data. (b)
The high-resolution prediction on the original synthetic data.

We then test our method on a post-stack time-migrated image
(see Figure 5a) from a China land field dataset. For training,
we extract 528 patches, each sized 128×128, from the origi-
nal image. Here, we observe that, in comparison to synthetic
data, field data is contaminated with noise, posing a challenge
for the resolution enhancement task. To better handle noisy
field data, we incorporate a denoiser within our framework. A
recent SSL paradigm utilizing IDR has been demonstrated to
address various type of seismic noise effectively (Cheng et al.,
2023a). Hence, by combining this SSL denoising framework
with our resolution enhancement approach, we can achieve
simultaneous seismic denoising and resolution enhancement.
Specifically, during the warm-up and IDR phases, after filter-
ing out the high-frequency components from the correspond-
ing pseudo-label data, noise is added to form the input data.
Given our prior knowledge that the field data is contaminated
with noise, we employ the following formula ni = 0.01ε ·std(yi)·
rand(0,1) to generate random noise, where ε denotes the noise
level, std(yi) represents the standard deviation of extracted
data patches yi, and rand(0,1) is the standard normal distri-
bution. During both warm-up and IDR phases, the input data
are generated by randomly filtering out frequencies higher than
20 ∼ 60 Hz from the pseudo-label data, and also, introducing
the noise with a level between 20 ∼ 100. To achieve faster
convergence, we directly employ models trained on synthetic
data as initialization. The network is trained for a total of 50
epochs, where the network is pre-trained for 20 epochs in the
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warm-up phase. The initial learning rate is 1e-4, which is re-
duced by a factor of 0.6 at 10 and 25 epochs.

Figure 5b displays the processing results on the original field
data by our method. We can see that our method significantly
enhances seismic resolution, particularly for shallow reflec-
tors, while effectively removing noise with the aid of the em-
bedded denoiser. Figure 6 shows a zoomed-in view of the
area marked by a red box in Figure 5, which clearly demon-
strates the substantial improvement in the quality of the origi-
nal imaging data achieved by our method. Meanwhile, Figure
7 presents the amplitude spectrum of the original data and our
processing product. It is evident that our approach notably ex-
tends the high-frequency content of the original image, while
preserving the low-frequency features of the original data.
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Figure 4: Amplitude spectrum comparison between the raw
synthetic data and the high-resolution prediction.
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Figure 5: (a) The original post-stack time-migrated image,
which comes from a China land field dataset. (b) The high-
resolution prediction on the original image using our frame-
work.

CONCLUSIONS

We developed a novel neural network (NN)-based seismic res-
olution enhancement method trained in a self-supervised learn-
ing (SSL) fashion. Under our framework, the NN sequen-
tially undergoes two stages: warm-up and iterative data refine-
ment (IDR). In the warm-up stage, we construct a lesshigh-
high (LH2H) dataset, using the original observed data, which
has a limited frequency band, as pseudo-labels. The input data
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Figure 6: Zoomed-in view corresponding to the red box areas
in Figure 5: (a) The original low-resolution field data. (b) The
high-resolution prediction on the original field data.
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Figure 7: Amplitude spectrum comparison between the raw
field data and the high-resolution prediction.

are obtained by applying a low-pass filter to these pseudo-
labels, resulting in a further loss of high-frequency content.
The NN rapidly warms up on this constructed dataset, ini-
tially extracting the original data’s frequency characteristics
and providing a degree of high-frequency extension capabil-
ity. During the IDR stage, we update the LH2H dataset in
each training epoch, where the pseudo-labels are derived from
the network’s predictions of the original data from the previ-
ous epoch, and the input data are created by applying a low-
pass filter to these predicted pseudo-labels. Continually up-
dating the training dataset allows us to gradually reduce the
frequency information bias between the network’s predictions
and the ideal ground truth, and thus, steadily enhancing the
network’s high-frequency extension performance, thereby im-
proving the seismic resolution. The test results demonstrated
that our method effectively enhance seismic resolution.
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