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Full waveform inversion (FWI) is a high resolution seismic
imaging method based on the iterative minimization of the
misfit between observed and synthetic data. The synthetic data
is obtained through the solution of partial differential equa-
tions representing the wave propagation within the subsurface.
Designed at the beginning of the 80s (Lailly, 1983; Tarantola,
1984), FWI was first applied to 3D field data by Sirgue et al.
(2010), producing an unprecedentedly high resolution estima-
tion of the velocity model. FWI is now routinely applied in the
hydrocarbon exploration industry and is an essential step of
the seismic imaging workflow. More and more, thanks to the
recent increase of computing capabilities, FWI output models
are directly used to derive reflectivity images, bypassing the
conventional migration step (Huang et al., 2021). They can
also contribute to the geological interpretation as FWI yields
“quantitative” estimates of the velocity models.

This common practice of FWI tends to forget a key aspect
of the method: from a mathematical standpoint, FWI is an
ill-posed inverse problem, whose solution is in essence non-
unique. Basing imaging results and their geological interpre-
tation on a single output FWI model can thus be dangerous,
and there is a need for methods being able to quantify the un-
certainty attached to a FWI model. Such methods can be clas-
sified into two main families: global and local ones. Global
schemes rely on a global sampling of the posterior Probabil-
ity Density Function (PDF) through typically Markov Chain
strategies, under a Bayesian formalism (see Gebraad et al.,
2020, for an example). While such schemes are highly de-
sirable in their ability to provide a general view of the uncer-
tainty attached to the FWI solutions, the corresponding com-
putational cost make them difficult to apply to realistic scale
problems. On the other hand, local uncertainty quantification
schemes are based on an approximation of the posterior co-
variance operator in the final output model (i.e. Mulder and
Kuvshinov, 2023). Such local schemes quantify the variability
of the solution with respect to a given FWI result instead of
an ideal “ground truth”, making the uncertainty quantification
problem easier while providing valuable insights in the FWI
results.

Such local schemes conventionally rely on a low-rank approx-
imation of the inverse Hessian operator through (potentially
randomized) truncated Singular Value Decomposition (SVD).
These methods require to sequentially compute Hessian-vector
products, which amounts to the solution of several 3D wave
propagation problems. They also need to specify a threshold
for the truncation which is always arbitrary. In this work, we
develop an alternative to these schemes based on an Ensemble
Transform Kalman Filter (ETKF), a method developed in the
field of data assimilation with applications in weather forecast-
ing (Evensen, 1994; Thurin et al., 2019).

Starting with an initial FWI model, we generate an ensemble

of models by adding to it zero mean random perturbations.
The perturbations are spatially correlated to make sure the spa-
tial wavenumber content of the perturbed models is compatible
with the considered frequency band. Then, we decompose the
available data in subsets of data. This decomposition can be
done following a conventional hierarchy strategy (frequency
continuation, time-offset windowing) or using for instance ran-
dom shot subsampling, which we adopt in this study.

FWI is ran using each member of the ensemble as a starting
model. After the inversion of each subset of data, a statistical
correction is performed on each model: the analysis step in
ETKF. This corrects the current ensemble to bring each mem-
ber closer from the data of the next subset, while mitigating the
deviation to the current mean model. The process ends when
all the data has been used. In Figure 1 we present the applica-
tion of this ETKF-FWI scheme to 3D field data from the North
Sea. We show a vertical slice of the estimated mean model and
its associated variance computed for 3 ensemble sizes: 10, 50,
and 200 models. While using 10 models leads to undersample
the variance, the variance extracted at a single pixel shows that
with 50 and 200 members we converge towards a Gaussian dis-
tribution, which comforts us in the interpretation of the results
and the reliability of this local uncertainty analysis scheme.

Compared with conventional SVD based methods, our com-
bined ETKF-FWI scheme is intrinsically parallel as each FWI
process can be ran independently. The algebraic operations in-
volved at each analysis step involve only low rank operators
and are thus negligible in terms of computation cost. This
local uncertainty analysis scheme is thus particularly suited
to run in parallel on large scale computing clusters, such as
the forthcoming exascale machines. Implementing our ETKF-
FWI on such a computing device is part of ongoing develop-
ments based on this work.
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Figure 1: (a.i-c.i) Inline vertical section of the final mean Vp
model, (a.ii-c.ii) final variance, (a.iii-c.iii) distribution of the
models at a given point marked in red. The results are obtained
with three ensemble sizes (a) Ne = 10, (b) Ne = 50, (c) Ne =
200.


