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ABSTRACT 

 

We revisit the well-known yet unsolved sparse-spike 

deconvolution problem and offer a new promising approach 

to address challenges posed by thin layers.  In its simplest 

noise-free formulation, the problem can be cast as an ill-

posed matrix inversion problem, 𝑠 = 𝑊𝑟, where we estimate 

the reflectivity vector 𝑟, given the trace vector 𝑠 and the 

wavelet convolution singular matrix 𝑊, together with the 

prior knowledge that the number of non-zero elements in 𝑟 

is much smaller than the number of samples, 𝑛.  A typical 

approach is to solve the constrained optimization problem 

min
𝑟∈ℝ𝑛

𝐽(𝑟) ≐ ‖𝑠 −𝑊𝑟‖2 + 𝜆𝑔(𝑟) 

Where 𝑔(𝑟) is a regularization term, and 𝜆 > 0 is a control 

parameter.  The direct approach is to take 𝑔(𝑟) = ‖𝑟‖0, 

which is the number of non-zero elements in 𝑟.  A common 

approach, however, is to use 𝑔(𝑟) = ‖𝑟‖1 as a proxy 

because 𝑙1 minimization leads to good sparse 

approximations while being more tractable numerically; 

e.g., see (Baraniuk, 2007).  Recently, Torres and Sacchi 

(2023) addressed the limitations of the traditional 

approaches using deep learning. 

 

In this paper we consider the direct approach based on 𝑙0 

minimization.  The celebrated matching pursuit (MP) 

algorithm (Mallat and Zhang, 1993) offers a numerically 

tractable method based on sequential projections on 1-

dimensional subspaces in an 𝑛-dimensional space.  

However, as Zhang and Castagna (2011) pointed out, MP 

tends to fail when dealing with thin layers. 

 

This paper shows that MP can be readily extended to resolve 

the thin-layer problem.  Specifically, we introduce a new 

algorithm, Variable Multidimensional Sequential 

Projections (VMSP), which produces excellent results for 

reflectivity series containing thin layers.  The algorithm is 

similar to MP but differs in 2 crucial ways.  First, it replaces 

projections on 1-dimensional subspaces in each iteration by 

projections on certain 𝑝-dimensional subspaces, where 𝑝 is 

a small natural number, typically less than 10.  This step 

extends the idea of a dictionary of basis vectors into a 

dictionary of “thin” 𝑛 × 𝑝 matrices.  Secondly, VMSP 

allows for “variable” projections; i.e., the dimensionality of 

the optimal subspace computed in each iteration can vary 

from one iteration to the next.  As such, the algorithm 

produces an optimal sequence of natural numbers (𝑝1, … , 𝑝𝑙) 
corresponding to the dimensions of various subspaces 

involved in the search for best estimate in each iteration. 

 

The presentation will provide details of the VMSP 

algorithm.  The framework can be cast as an optimal solution 

to a finite Markov Decision Process for computing the 

particular sequence of projections on a set of subspaces that 

result in the best approximation of the original sparse 

reflectivity series.  As such, the problem can be formulated 

as a Reinforcement Learning problem (Szepesvári, 2022). 

 

In Figure 1(a) we show a synthetic series of reflection 

coefficients consisting of 256 samples, 10 of which are non-

zero.  When convolved with a standard 20-Hz Ricker 

wavelet, the series yields the synthetic trace shown in Figure 

1(b).  The challenge is to use this trace as an input to an 

algorithm, together with the Ricker wavelet, to estimate the 

original sparse-spike reflectivity series.  The user-specified 

parameters required for our algorithm are 𝑝, the highest 

dimension to use in the iterative projections, and 𝑙, the 

number of iterations to consider.  For example, with 𝑝 = 5 

and 𝑙 = 5, the VMSP algorithm found the optimal sequence 

(4,5,5,1,5).  That is, the best estimate for 𝑟 is found by an 

extended MP algorithm that searches for the optimal 4-

dimensional projection in the first iteration, the optimal 5-

dimensional projection in the second iteration, etc.  The 

computed optimal estimate for 𝑟 is shown in Figure 1(c).  

The algorithm has correctly computed all locations and 

approximate amplitudes of the 10 non-zero reflection 

coefficients in the original series.  However, it produced a 

very small number of spurious coefficients that are nearly 

zero, which do not appear in the original series.  The relative 

error in the final estimate is 0.1162.  But the error can be 

driven essentially to zero if one applies a simple threshold-

based denoising filter to the final estimate.  As such, VMSP 

can provide surprisingly accurate sparse-spike 

deconvolution results. 

 

Figure 1: (a) reflectivity series, (b) trace, (c) deconvolved trace. 
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