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SUMMARY 
 
This study investigates model order reduction (MOR) in 
time-lapse full-waveform inversion (FWI) using radial basis 
function (RBF). It introduces a dual-parameterization 
approach that combines a reduced-order basis space for 
time-lapse changes with a finite-difference (FD) grid for the 
baseline model, facilitating wave propagation. The RBF 
approach allows for representing time-lapse changes on a 
nonuniform grid, offering variable resolution. This method 
is validated through three synthetic examples: a CO2 plume 
monitoring scenario, a reflection-based time-lapse FWI, and 
an extension to elastic FWI for near-surface monitoring 
using surface waves. Results demonstrate effective MOR 
without compromising FWI accuracy, provide implicit 
regularization for various geological structures, and 
highlight the method's potential to enhance computational 
efficiency in advanced inversion techniques such as 
Newton-like methods and Hamiltonian Monte Carlo for 
Bayesian inference. 
 
 
INTRODUCTION 
 
Time-lapse seismic monitoring is an important method for 
detecting and characterizing subsurface changes (Lumley, 
2001). Time-lapse full-waveform inversion (FWI) has been 
proven effective in characterizing subsurface changes at 
high resolution associated with hydrocarbon production 
(Hicks et al., 2016) and CO2 injection (Egorov et al., 2017). 
Nonetheless, FWI is a high-dimensional inverse problem 
(Virieux & Operto, 2009). Optimization schemes such as 
Newton-like methods (Pratt et al., 1998) or the Hamiltonian 
Monte Carlo method for the Bayesian inference (Gebraad et 
al., 1998) quickly become intractable with the sharp increase 
in model dimensionality. Therefore, enhancing the 
convergence rate or sampling efficiency by reducing the 
number of model parameters in FWI is essential. 
 
The spatial sampling grid in numerical wave propagation is 
determined by the stability and numerical dispersion 
conditions of a chosen numerical scheme. Typically, the size 
of this spatial sampling grid exceeds the resolution at which 
seismic data can resolve subsurface geological structures. 
While uniform down-sampling is a strategy to consider (Cox 
and Verschuur, 2001), it reduces resolution uniformly, 
which may not be desirable in time-lapse inversion. Other 
schemes for the sparse representation of the model space in 
FWI include image-guided interpolation (Ma et al., 2012) 
and B-spline interpolation (Barnier et al., 2019). In time-
lapse FWI, practitioners desire a down-sampling approach 
that adapts spatial resolutions, i.e., denser in areas of high 

interest such as reservoirs and sparser in the overburden 
areas. 
 
In this study, we investigate the use of RBF for achieving 
MOR in time-lapse FWI. RBF can represent the model using 
fewer parameters while maintaining variable spatial 
resolution (Kadu et al., 2016; Chen et al., 2020; Dahlke et 
al., 2020). Specifically, our focus is on using RBF to 
reparameterize the time-lapse changes that are the target of 
inversion. In the following sections, we first outline our 
methodology and then demonstrate its application through 
three different synthetic examples. These tests demonstrate 
that the proposed method not only effectively reduces the 
model parameters but also introduces implicit regularization. 
 
 
METHODOLGY 
 
In FWI, one aims to iteratively update the subsurface 
parameters using the optimization method to fit the observed 
seismic waveforms with the synthetic data calculated from 
the wave equation, given certain prior information. The FWI 
problem using the L2 norm can be defined as follows: 
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where ! denotes the subsurface parameters for inversion, 
)!"# denotes the observed waveform data, and )#$% = #(!) 
denotes the synthetic data modelled by the wave equation 
#(!). In time-lapse FWI, the objective is to track subsurface 
changes by inverting seismic data acquired from sequential 
seismic surveys. Several time-lapse inversion strategies have 
been proposed. In this study, we adopt the double-difference 
(DD) approach as proposed by Watanabe et al. (2004) and 
Zhang & Huang (2013). In this method, the composite data 
are inverted in the monitor FWI, which is defined as follows: 
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where the composite data is defined as &()* = &*+),- −
&,+),- + &,+-./. 
 
We introduce a reparameterization method using RBF for 
targeted changes, while the baseline model remains 
represented on finite-difference grids. The model space 
defined in Equation 2 is reformulated as follows: 

!*+ = !,+ +!0,1, (3) 
where !,+  denotes the baseline model, and !0,1  denotes 
RBF-represented reduced-order model space for time-lapse 
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changes, respectively. The RBF parameterization is further 
defined by: 
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where +  is the number of control points, ,2  denotes the 
weights associated with the RBF centers -2, and Φ denotes 
the selected RBF, respectively. In this study, we employ the 
Gaussian kernel for the RBF, which is given by /(0) =
1345!. It is noted here that the sharpness parameter 2 of the 
RBF, which controls the kernel's taper, is fixed during 
inversion due to stability concerns. Its value is empirically 
determined to match the desired resolution. 
 
With the proposed dual-parameterization strategy, the newly 
defined sparse model space for time-lapse FWI becomes 3. 
The gradient of the misfit function with respect to the new 
model parameters can be calculated using the chain rule as 
follows: 
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To achieve adaptive resolution, one can design the RBF 
centers according to a priori density maps. For example, 
positions of the RBF centers can be more densely arranged 
in reservoir areas to capture any high-resolution changes, 
while fewer centers are sufficient for overburden that may 
experience long-wavelength changes.  
 
For implementation, we leverage the meshing tools in finite 
element methods to facilitate this strategic placement of RBF 
centers. Also, we recommend testing a chosen RBF scheme 
in representing target 4D models before actual inversion to 
optimize RBF center placement and to select the appropriate 
parameter 2  for the RBF. It is helpful to understand the 
additional errors introduced by the RBF operator. 
Furthermore, after some preliminary inversions, adaptively 
repositioning some centers towards regions with significant 
changes or where the inversion shows high uncertainty can 
also be considered. As for the computational cost, the 
computational demand for the proposed RBF operator is 
marginal, and this operator can be performed on the fly or 
through pre-computed values as demonstrated in Dahlke 
(2019).  
 
 
NUMERICAL EXAMPLES 
 
In this section, we present synthetic examples to demonstrate 
the effectiveness of our proposed method in three different 
settings. The first two cases are based on acoustic time-lapse 
FWI for monitoring CO2 plume and monitoring oil reservoir, 
respectively. The third example involves near-surface 
characterization using surface-wave elastic FWI. For the 

numerical implementation, we use the staggered grid finite-
difference method (Virieux, 1986) to solve the first-order 
acoustic or elastic wave equation in the velocity-stress 
formulation, with free-surface conditions at the top and 
convolutional perfectly matched layer absorbing boundary 
conditions at the remaining boundaries (Komatitsch & 
Martin, 2007). The adjoint-state method is used to compute 
the gradient of the objective function with respect to the 
model parameters (Plessix, 2006). We solve the inverse 
problem using the L-BFGS optimizer, which employs the 
L2-norm misfit function. In the time-lapse FWI, the RBF 
coefficients are initialized as zeros.  
 
CO2 plume monitoring with sparse data  
 
Our first synthetic test is based on a realistic CO2 monitoring 
model. We repurpose the time-lapse reservoir model from 
SEG Advanced Modeling (SEAM), which features realistic 
stratigraphy and structural geology, to mimic CO2 injection 
into a depleted reservoir. We first employ the multiphase 
flow modeling to simulate the injection of a CO2-brine 
mixture, using the open-source code GEOS (Settgast et al., 
2017). We further use rock physics modeling to update the 
subsurface parameters, where fluid properties are modeled 
according to Batzle & Wang (1992) for brine and CO2, and 
fluid inclusion modeling is performed using the Kuster- 
Toksöz method (Kuster & Toksöz, 1974). Figure 1a displays 
a selected 2D section of the baseline P-wave velocity model 
from the entire 3D SEAM model, while Figure 1b illustrates 
the updates to this model resulting from CO2 injection. 
 
We begin our acoustic FWI with the initial model shown in 
Figure 1c to build the baseline FWI model, using 12 sources 
(red stars) with 25 Hz Ricker wavelets and dense receivers 
(spaced 4 m apart, black triangles). For the monitoring FWI, 
a sparser but more cost-effective survey is considered, with 
3 sources and 100-m spacing surface receivers, as shown in 
Figure 1e. Figure 1d shows the center positions of RBF to 
represent the time-lapse unknowns, given the prior of the 
CO2 injection area. Dense RBF centers with an average 
distance of 16 m are placed in the targeted area, whereas 
sparser RBF centers with an average distance of 100 m are 
used elsewhere. Figure 1e shows the time-lapse FWI result 
based on the conventional FD parameterization scheme with 
a grid size of 8 m, and Figure 1f shows the result using the 
proposed dual-parameterization strategy. We find that the 
proposed method can yield a result comparable to the one 
from the conventional method while achieving a MOR of 
~29. It is noted that the result in Figure 1e contains some 
high-frequency artifacts that may be attributed to the 
inaccuracy of the baseline FWI model. The result in Figure 
1f is smoother as the RBF can impose some smoothness. 
Still, we notice that the high-wavenumber structures at two 
sides of the CO2 plume is less well recovered in the RBF 
result shown in Figure 1f. 
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Figure 1: Acoustic time-lapse FWI for CO2 plume 
monitoring with sparse data. (a) The baseline P-wave 
velocity model before CO2 injection. (b) The P-wave 
velocity model update reflecting CO2 injection, derived 
from multiphase flow and rock physics modeling. (c) The 
initial velocity model for baseline FWI using a survey 
configuration with 12 sources (red stars) and densely spaced 
receivers (black triangles, 4 m apart). (d) The positions of 
RBF centers for reparameterizing the time-lapse changes. (e) 
Inverted time-lapse changes using conventional FD 
parameterization. (f) Results employing the proposed RBF 
reparameterization approach. Note: A sparse survey 
configuration (3 sources and receivers spaced 100 m apart) 
is used for monitoring. 
 
Oil reservoir monitoring with reflection data  
 
In the second case, we test our method on a FWI problem 
using reflection data, aiming to highlight how the RBF 
reparameterization deals with changes in both reservoir and 
overburden. Figure 2a shows the baseline P-wave velocity 
model, which is selected from the SEAM model. Figure 2b 
shows the time-lapse changes with two anomalies, a short-
wavelength velocity perturbation in the reservoir (+100 m/s) 
and a long-wavelength change peaking at -50 m/s in the 
overburden. Figure 2c presents the initial model used for the 
baseline FWI. A narrow-offset survey is considered here to 
test the reflection FWI, with a total of 11 sources (16 Hz 
Ricker wavelet) and 10-m spacing receivers. Figure 2d 
shows the positions of RBF centers, where the reservoir area 
has dense centers with an average distance of 15 m while the 
overburden has sparser centers (55 m). 

 
Figure 2: Acoustic time-lapse FWI using the proposed 
method for oil reservoir monitoring with reflection data. (a) 
The baseline P-wave velocity model. (b) The true model 
perturbations representing the time-lapse changes in the 
reservoir and overburden. (c) The initial velocity model for 
baseline FWI, with an illustration of sources and receivers. 
(d) Strategically positioned RBF centers for 
reparameterizing the time-lapse changes. (e) Inverted time-
lapse changes using conventional FD parameterization. (f) 
Inverted time-lapse changes using the proposed RBF 
reparameterization approach. 
 
Figure 2e shows the inverted velocity changes using the 
conventional FD parameterization scheme. In this result, it 
is observed that the long-wavelength velocity changes are 
not revealed by the reflection data. These negative blocky 
changes in the model are erroneously explained by reflector 
shifts in FWI. This is likely due to the inaccuracies in the 
inverted baseline FWI model. Indeed, the bandwidth of the 
data, from a 16 Hz Ricker wavelet, cannot resolve all the 
short-wavelength structures present in the true baseline 
model (Figure 2a). Inaccuracies exist in the inverted baseline 
FWI model. In comparison, time-lapse FWI using the 
proposed method successfully constrains both short- and 
long-wavelength perturbations, as shown in Figure 2f, while 
also achieving a MOR of approximately 17.  
 
Our proposed method employs a non-uniform resolution of 
the RBF grid, which introduces an implicit form of 
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regularization. This is achieved by allocating finer RBF 
centers to the reservoir area and coarser ones to the 
overburden. Consequently, this allocation strategy 
inherently provides an implicit regularization effect. 
Maharramov & Biondi (2016) developed a simultaneous 
inversion method and introduced an explicit regularization 
term on model updates to address a similar problem. But 
choosing proper weights is nontrivial in practice. 
Additionally, adopting a multi-scale inversion strategy can 
be another possible solution to constrains both short- and 
long-wavelength well. 
 
Near-surface monitoring with surface waves 
 
We further extend the proposed method to elastic FWI with 
surface waves for near-surface monitoring. High-frequency 
dispersive surface waves propagate at shallow depths, while 
lower-frequency content propagates to greater depths. As a 
result, the resolution of the surface wave FWI decreases with 
depth. RBF allows this varying resolution by distributing the 
interpolation centers accordingly. Figure 3a shows the 
targeted monitor S-wave velocity model, with four 
anomalies overlaid on the background velocity model, which 
is further detailed in Figure 3c. We choose the position of 
RBF centers shown in Figure 3b, where the average distance 
between those RBF centers gradually increases from the top 
to the bottom of the model from 15 m to 90 m. Figure 3d 
shows the inverted S-wave velocity using the conventional 
FD parameterization, whereas Figure 3e presents the 
inverted model using our proposed RBF scheme. For this 
surface-wave FWI problem, the recovery of the anomalies is 
similar. But in the latter result, the deepest anomaly has a 
flattened top boundary, which can be attributed to imposed 
smoothness by the interpolation of the RBF. In this case, we 
achieve an MOR on the order of ~8. 
 
CONCLUSIONS 
 
In this study, we propose using RBF to reparameterize time-
lapse FWI problems to reduce the model space. RBF is well-
suited to the time-lapse targets as they can adapt to complex 
structures without the need for uniformly dense grids in the 
whole computational domain. Through three different 
synthetic tests, we demonstrate that the proposed RBF-
parameterization strategy not only achieves varying degrees 
of MOR but also maintains the quality of the inverted results. 
Furthermore, RBFs inherently act as a form of regularization, 
as evidenced in the second case where both short-
wavelength changes in the reflector and long-wavelength 
changes in the overburden are effectively constrained. We 
expect that the proposed method will enhance the 
computational efficiency of inversion methods like the 
Gauss-Newton and Bayesian approaches by employing a 
reduced model space. 

 
Figure 3: Elastic time-lapse FWI using surface waves for 
near-surface change monitoring. (a) The monitor S-wave 
velocity model, where four anomalies are introduced as the 
time-lapse changes. (b) Strategically positioned RBF centers 
for reparameterizing the time-lapse changes. (c) True time-
lapse changes. (e) Inverted time-lapse changes using 
conventional FD parameterization. (f) Inverted time-lapse 
changes using the proposed RBF reparameterization 
approach. Note: The initial velocity model for inversion is 
the background S-wave model. The P-wave velocity and 
density models are obtained by scaling the S-wave velocity 
model. 
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