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SUMMARY

Seismic images often lack the high resolution needed for
proper identification of subsurface structures and potential hy-
drocarbon reservoirs, and that is due to factors such as lim-
ited data acquisition and the attenuation of seismic waves as
they travel through the Earth’s subsurface layers. Most of
the seismic image enhancement algorithms do not account for
prior features of high resolution seismic data. Thus, we pro-
pose using a generative diffusion model to enhance seismic
image resolution. Specifically, we employ the Brownian dif-
fusion bridge model (BBDM) to translate samples from a low-
resolution image distribution to one corresponding to a high-
resolution image distribution. To address the issue of training
solely on synthetic data and improve the generality of the neu-
ral network, we adopted a robust training procedure using the
know-distillation technique within a “teacher-student” frame-
work. Field datasets demonstrated the robustness and good
performance of the proposed method. Additionally, the intrin-
sic denoising feature of the diffusion model provides an added
image-denoising capability for our methodology.

INTRODUCTION

Seismic images play a critical role in understanding the geo-
logical composition and resource distribution beneath the Earth’s
surface. Unfortunately, these images often suffer from lim-
ited resolution and significant frequency loss during wavefield
propagation. These limitations impact the accuracy of geolog-
ical interpretation, especially when detecting subtle changes
such as lithological facies and subtle geological shifts. There-
fore, improving seismic image resolution is essential to en-
hance the precision of geological analysis and reduce uncer-
tainty in seismic interpretation. Traditionally, methods like
seismic deconvolution or sparse spike inversion have been em-
ployed to extend the frequency band of seismic images. While
effective under favorable signal-to-noise conditions, these con-
ventional approaches (Sacchi, 1997; Chen and Wang, 2018)
encounter challenges when dealing with substantial noise. Ad-
ditionally, achieving enhanced resolution in a structure-oriented
manner requires significant effort to maintain lateral coher-
ence.

Artificial intelligence has revolutionized seismic resolution en-
hancement. Machine learning-based techniques, particularly
those using convolutional neural networks (CNNSs), aim to pre-
dict high-resolution images from low-resolution counterparts
(Li et al., 2021; Gao et al., 2023). However, these “image-
to-image” predictions often overlook valuable prior informa-
tion within the images. Furthermore, the training of the neural
networks for these methods usually involves synthetic dataset
only and this can easily lead to over-fitting, limiting their gen-
eralization capabilities to real-world field datasets (Alkhalifah
et al., 2022; Zhang et al., 2022).

Recently, the generative diffusion model has demonstrated re-
markable performance in realistic image (and even video) gen-
eration. Many applications have adopted the diffusion model
as a critical infrastructure to enhance performance. Broadly
speaking, a diffusion model is a parameterized probabilistic
model. It comprises two Markov processes: the forward pro-
cess and the reverse process. The forward Markov process
represents a fixed diffusion mechanism. During this process,
Gaussian noise is gradually added to the input data (such as
an image) through a series of steps. Conversely, in the reverse
Markov process, a parameterized neural network is employed
and trained to learn how to reverse this noise-induced trans-
formation and recover the original data. From a probability
distribution perspective, the forward process corresponds to
the evolution of the complex data distribution toward a sim-
ple Gaussian distribution, while the reverse process operates
in the opposite direction (Ho et al., 2020).

In our research, we systematically explore the application of
diffusion models to enhance seismic image resolution. Specif-
ically, we investigate a type of diffusion model known as the
Brownian Bridge Diffusion Model (BBDM:(Li et al., 2023)).
Our goal is to enhance images by transforming samples from
a data distribution of low-resolution images to a data distribu-
tion of high-resolution images. Unlike existing diffusion meth-
ods, Brownian diffusion bridge models establish a mapping
between the input (low-resolution image) and output (high-
resolution image) domains using a Brownian bridge stochas-
tic process. This approach differs from the usual “image-to-
image” conditional generation process and contributes to im-
proved model generalization. This work also introduces a novel
contribution by utilizing a knowledge distillation technique to
address the challenge of generalization for the seismic im-
age resolution enhancement task. Specifically, we demonstrate
that by distilling knowledge from a teacher neural network
trained solely on synthetic data, the student neural network
achieves improved and more robust performance.In subsequent
sections, we delve into the fundamental concepts of the gener-
ative diffusion model. We then introduce the Brownian Bridge
Diffusion Model as our chosen methodology for resolution en-
hancement. Our training approach leverages knowledge distil-
lation within a “teacher-student” framework. We present com-
pelling results using real-world field datasets, showcasing the
efficacy and robustness of our proposed methods.

THEORY

Denoising Diffusion Probabilistic Models
The generative diffusion theory encompasses various approaches,

including Denoising Diffusion Probabilistic Models (DDPMs:(Ho

et al., 2020)), denoising score matching (Song and Ermon,
2019) and stochastic differential equations (score SDEs:(Song
etal., 2020)). While the fundamentals behind these approaches
are similar, we opt for DDPMs due to their discrete Bayesian



variational formulation, which facilitates comprehensive un-
derstanding.

Similar to other diffusion methods, DDPMs involve two es-
sential Markov processes: the forward process and the reverse
process. The forward Markov process g is defined as:
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where T is the total number of steps for diffusion, x;,i =0, ...T
represents multidimensional array in different time steps. Spe-

cially, x is the sample from the data distribution, while x;,X», ...

are the intermediate samples after incremental diffusion (e.g.,
adding noise to Xg). At each iteration of the forward process,
Gaussian noise is added according to:
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where noise schedule parameter f3; is a scalar value in the range
[0,1] and fixed for each time step and I is the identity matrix.
With proper defined f3;, the forward diffusion process tries to
reduce the information content and enhance the noise level. To
speed up the training, we can actually sample at arbitrary time
step ¢ without referring to the chain formula as follows:
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The schedule of B; usually results in a distribution g(x;|xq) to
be a standard Gaussian distribution .4 (x;0,I). By the reverse
process, we can generate new data starting from a random sig-
nal drawn from .4 (x;0,I). Specially, the reverse process is
structured as a neural network, with parameters denoted by 6:
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Similar to forward process, transition in the reverse step is de-
fined as Gaussian distribution:
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where g and Xg are the mean and variance respectively. In
DDPMs, the variance part Xg is usually fixed and not trained.

po(Xi—1/%) = (6)

According to Bayesian variational inference, the loss func-
tion for training the DDPMs is given by the Evidence Lower
BOund (ELBO). DDPMs reparameterize the mean (14 in equa-
tion 6 using the added noise € and simplify the ELBO objective
to be a denoising formula :
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Intuitively, the reverse process can be perceived as making pre-
dictions and fitting the introduced noise, denoted as €. Typi-
cally, we employ U-Net for the noise neural network &g (x;,7),
given its superior performance in pixel-level prediction tasks.
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The theory described earlier pertains to unconditional genera-
tion. However, for typical ‘image-to-image’ translation tasks
(such as enhancing seismic image resolution), we must con-
strain the generative process based on a given condition, e.g.,
denoted as y (representing the low-resolution image). Incor-
porating this condition in a diffusion model is usually straight-
forward: we directly inject the condition during the reverse
process, leading to the following training objectives
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In this approach, the forward process remains intact, imply-
ing that the diffusion process is still applied solely to x. The
condition y serves as an additional input only during the re-
verse process, without any explicit distribution related to y. To
elaborate further, consider a non-conditional diffusion model
described by Equation 7: during the forward process, we trans-
form the data distribution into a Gaussian distribution and aim
to learn the reverse translation (from Gaussian to data dis-
tribution). For the conditional diffusion model expressed by
Equation 8, our goal remains to reverse from a Gaussian dis-
tribution to a data distribution, but with the inclusion of an
extra condition. However, in the context of ‘image-to-image’
translation, we prefer learning to reverse from one data dis-
tribution (e.g., the distribution related to the low-resolution
image) to another data distribution (e.g., the distribution re-
lated to the high-resolution image). To achieve this, we need a
slightly different approach, such as the Brownian Bridge Dif-
fusion Model.
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Brownian Bridge Diffusion Model

As described, in conventional conditional diffusion model, the
forward diffusion process begins with a clean data point xg ~
DPdata(X0) and evolves toward a standard Gaussian distribution.
However, Brownian Bridge Diffusion Model deviates from this
trajectory by employing the conditional input y as the termi-
nal point in a Brownian bridge process. Consider a pair of
data points (y,X), where y corresponds to low-resolution im-
age and x corresponds to the associated high-resolution image.
The forward diffusion process in the Brownian bridge model
follows a Gaussian process and the transitional kernel can be
defined as :
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In 9, T is the total number of steps for the diffusion process,
m; =1/ T represents the weight between the source domain im-
age X¢ and target domain image y. The parameter 6/ denotes
the variance for the added noise. Following a similar variance-
preserving (VP) strategy as in DDPMs, we set it to be

62 =1—((1—m)*+m?) =2(m; —m?). (11)
The choice of m; ensures that the noise tends to zero at both
ends while achieving a maximum value of 0.5 in the middle
of the Brownian bridge. Notably, from equation 10, we can
observe that xo = x and x7 =y. This indicates that the forward

diffusion process in BBDM bridges the gap between the source



and target images. A similar loss function as equation 8 can be
formulated to train the BBDM model:

Et,(y,xo),enge(xt = (1 —mg )Xo +my + 0;€,1) —€H2- (12)

A naive diffusion model typically requires hundreds of steps
for inference. Fortunately, several algorithms have been devel-
oped to accelerate the sampling process. The Bayesian Bridge
Diffusion Model (BBDM) is particularly versatile, as it can
be easily adapted to utilize most of the existing acceleration
techniques. For instance, in our current work, we adjusted the

model using Denoising Diffusion Implicit Models (DDIM:(Jiaming

et al., 2020)), allowing us to achieve accurate inference with
just 5 steps. We provide a concise summary of the inference
procedures in Algorithm 1.

Algorithm 1 Inference Algorithm by DDIM

Require: total sample steps Ny, sampling times {t,}i\i 61, seis-
mic low resolution image y, trained neural network €g (x;,7)
Initial the sampling step i <— Ny — 1
Initial the seismic high resolution image x;, |, =y
while i > 1 do

Compute my,,my,_,, 02,07 |

Compute the predicted noise € = €g(xy,, 1)

Compute the high resolution image:

X = ]%W(Xt; - mz;Y) —O1,€
Weight and add noise :
X = (1- my_, )Xo +my Y+ 0, €
Iterate to next step i <— i — 1
end while

Knowledge distillation: student beats teacher

In the context of our training, we require a pair of low-resolution
and high-resolution images. However, obtaining such a dataset
for training in real-world applications is challenging. On the
other hand, we can simulate synthetic low-resolution and high-
resolution images. Unfortunately, neural network models trained
solely on synthetic data struggle to generalize to real-world
data due to domain shift. The significant differences in wave-
form signatures and noise patterns between synthetic and real
data pose a challenge. To address this issue, we employ a do-
main adaptation technique. Specifically, we adopt a teacher-
student knowledge distillation approach. Here’s how it works:
First, using exclusively synthetic data, we train a teacher model.
Once trained, we keep the teacher neural network fixed. Next,
we feed real low-resolution images to the teacher model and
use its output (assumed to be the predicted high-resolution
image) as labels for training another student neural network.
Importantly, the student neural network only receives the real
low-resolution image as input, while the corresponding high-
resolution image label is provided by a pretrained teacher neu-
ral network. Our experiments demonstrate that this teacher-
student knowledge distillation framework works effectively. It
tends to produce artifact-free high-resolution images from real
low-resolution inputs, making it more robust in practice..

EXAMPLES

In this section, we present two illustrative examples. The first

example showcases the effectiveness of the teacher-student knowl-

edge distillation framework when applied to field data. The
second example highlights the denoising capabilities inherent
in the diffusion model, demonstrating that the learned neural
network performs joint denoising and resolution enhancement.
We generated 640,000 synthetic samples (as depicted in Fig-
ure 1) for training the teacher neural network. The image size
for processing is 64 by 64 pixels. In practical applications, we
apply an inline section on windowed patches. Both the teacher
and student networks utilize the same U-Net architecture, with
the student neural network having its channel size halved. Fol-
lowing the recommended knowledge distillation training pro-
cedure, we applied the trained model to a field dataset, as
shown in Figure 2a. The resolution-enhanced image produced
by the teacher neural network (Figure 2b) aggressively boosts
high-frequency components but exhibits noticeable artifacts.
In contrast, the result from the student neural network (Fig-
ure 2c) is smoother and artifact-free. Additionally, in Figure
2d, we analyze the spectra, further confirming that the student
neural network mitigates significant noise in the higher fre-
quency range, leading to a more robust outcome. Next, we
evaluated the trained student neural network on another seis-
mic image (Figure 3a). The corresponding result (Figure 3b)
not only demonstrates improved resolution but also showcases
the effectiveness of the proposed diffusion-based resolution
enhancement method in denoising, particularly for deeper re-
gions of the model.

CONCLUSION

We introduced the Brownian Bridge Diffusion Model as a pow-
erful tool for enhancing seismic image resolution. Specifically,
the BBDM facilitates the transformation of the low-resolution
image distributions to their high-resolution counterparts. Our
approach involves a robust training procedure that leverages
knowledge distillation from a teacher neural network (trained
exclusively on synthetic data) to a student neural network. The
results for field datasets demonstrate the robustness and ex-
cellent performance of our proposed method in resolution en-
hancement. Additionally, owing to the intrinsic denoising ca-
pabilities of the diffusion model, our approach also excels in
image denoising.
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Figure 1: a) Synthetic low resolution and b) The corresponding
high resolution image. Certain amount of noise are added to
the low resolution image for data augmentation purposes.
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Figure 2: a) Input seismic (low resolution) image; b) Resolu-
tion enhanced image by teacher neural network; c) Resolution
enhanced image by student neural network; d) A comparasion
of their spectra.
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Figure 3: a) Input low resolution image; b) Resolution en-
hanced image.



