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SUMMARY 

 

In principle, Bayesian inference is a robust way to 

simultaneously incorporate prior knowledge and quantify 

uncertainty during a physics-based inversion like seismic 

inversion. In practice, Bayesian methods can be 

computationally costly, requiring many evaluations of the 

forward model and samples from the prior, the latter 

becoming significant when samples are large three-

dimensional (3D) images (>1e7 voxels) containing complex 

sub-seismic geology. In our Bayesian approach to seismic 

inversion, we mitigate this computational cost by 

encapsulating prior knowledge within a Generative 

Adversarial Network (GAN; Goodfellow et al., 2014), a 

generative machine-learning (ML) model with fast 

sampling-time and high-quality output. We trained a GAN 

on realistic process stratigraphy data and implemented an 

architectural change that improves the quality of very large 

outputs. We also demonstrated a training strategy for 

decreasing the size of the GAN’s latent space, which we 

expect will reduce the difficulty of the inverse problem by 

reducing its dimensionality. Finally, we augmented the 

stratigraphic training set, and therefore the GAN, with other 

types of prior knowledge, specifically sand-body 

orientation, which helps further constrain the output of 

seismic inversion.  

 

INTRODUCTION 

 

Relevant prior knowledge for seismic inversion includes 

plausible distributions of rock properties like Vclay and 

porosity, which convey their spatial organization at multiple 

length scales, especially scales <10 m in height that are 

poorly constrained by seismic data alone.  One source of this 

prior knowledge is process stratigraphy models that simulate 

the deposition of sediment in deepwater environments 

(Wahab et al., 2022). Over time, sediment in certain regions 

accumulates into large bodies of sand and shale, known as 

submarine fans. While submarine fans generated by these 

process models are physically plausible, they do not by 

themselves precisely match a specific seismic dataset.  

However, they are a rich source of small-scale geologic 

information that can be learned by generative ML models.  

Such models can then interpolate between, and in some cases 

stitch together, the learned geologic patterns producing a 

much wider variety of plausible subsurface geologies, 

improving the chances of finding some that match 

observations like seismic data.  

 

As part of training, generative ML models fit a highly 

parameterized, flexible probability distribution to the 

training data (Goodfellow, 2016). After training, the 

resulting model can efficiently generate new samples from 

that distribution.   Provided their sampling time is fast 

enough, these models may function as prior probability 

distributions in Bayesian inference. In some generative 

models, sampling proceeds by first sampling a vector in a 

latent space, which is typically distributed as a standard 

multivariate normal.  Then, that vector is mapped to pixel 

space via a trained neural network, generating the output 

image (or volume) representing the physical domain where 

observations take place. Often, the latent space has a lower 

dimension than the pixel space, a benefit for inversion 

applications (Fernández-Martínez & Fernández-Muñiz, 

2020). For example, there are inversion frameworks where 

Bayesian inference happens entirely within the low-

dimensional latent space, and the generative ML prior 

performs the task of mapping posterior samples from the 

latent space back to the pixel space (Tewari et al., 2022). 

 

The objective of the present study was to identify and train a 

generative ML model that meets the requirements of fast 

sampling-time and a highly compressed latent space 

intended for Bayesian inference (Fig. 1), specifically 

Bayesian seismic inversion at commercially relevant scales 

(>1e7 voxels). To that end, we have investigated different 

ML architectures, training strategies, and data augmentation 

approaches, some of which are described here. 

  

METHODOLOGY 

 

We source training data from completed process stratigraphy 

simulations (Wahab et al., 2022), ideally run under flow 

conditions relevant to the ultimate inversion use case. On 

one hand, the quantity of available simulation images 

(limited by computational cost), if treated as individual data 

points, would be insufficient to train a generative ML model. 

On the other hand, for seismic inversion, the generative ML 

model primarily needs to learn geologic patterns near or 

below a vertical length scale of 10 m.  So, each simulation 

can be mined for many small overlapping training patches 

 

Figure 1:  Bayesian inference workflow with a GAN-based prior. 
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(Fig. 2). The patch size is an important hyperparameter that 

should be selected based on 1) whether it produces 

sufficiently numerous/diverse patches from the simulation 

and 2) the length scale of geologic patterns that need to be 

learned. If the prior is trained on patches, the question 

remains of how to generate much larger posterior images for 

the workflow in Fig. 1. 

 

One solution is to select a generative ML model with a fully 

convolutional architecture, where the latent coordinate is 

now a tensor having the same rank as the output images, and 

the size of the output can be increased by adding more 

“voxels” to the latent coordinate. This architecture has been 

demonstrated in GAN’s (Jetchev et al., 2016) and applied to 

geologic images (Laloy et al., 2018; Song et al., 2022; Zheng 

& Zhang, 2022).  A useful feature of this architecture is that 

by varying the training-patch size along with other 

hyperparameters of the network, the “projective field” 

(Jetchev et al., 2016), or neighborhood of influence of a 

latent voxel, can be varied, providing control over the 

length-scale of correlations in the output image. In the 

present work, we adopt this fully convolutional GAN 

approach; later we describe an architectural change, 

specifically to the convolutional padding, that improves the 

quality of large images generated from a GAN that was 

trained on small patches. 

 

For our seismic inversion approach, the output images at a 

minimum contain an attribute for Vclay; porosity could be 

populated by a deterministic correlation, a separate 

distribution or learned from the training set.  Other attributes 

could be added that incorporate other types of prior 

information; we experimented with adding two attributes (a 

sine and cosine) that encode the azimuthal angle formed 

between a vector parallel to the feeder channel and another 

vector connecting the channel mouth to the voxel location.   

It is observed in our simulations that channelized sand 

bodies preferentially align in this direction.  By adding these 

attributes, we give the inversion the option to control 

regional alignment of sand bodies in its results, while 

preserving the local freedom of sand bodies to deviate from 

this direction, as seen in the process stratigraphy simulations. 

 

RESULTS & DISCUSSION 

 

GAN Image Quality, Statistics, and Sampling Time 

 

We trained a GAN on 32 m × 800 m × 800 m overlapping 

patches extracted from process stratigraphy simulations like 

the one shown in Fig. 2.  For this training set, the chosen 

patch size turned out to be a good compromise between 

quantity of training patches and continuity of GAN output 

images, while, importantly, containing the <10 m features 

needed for seismic inversion. Based on visual comparison of 

randomly selected training patches (Fig. 3a) and GAN 

outputs (Fig. 3b-d), the quality was deemed sufficient for our 

applications.  

 

When extrapolating to larger output sizes (Fig. 4a), quality 

remains sufficient, although at larger length scales, we 

observed more randomness than would be typical in a real 

submarine fan. This randomness is to be expected, because 

spatial correlations only extend as far as the projective field 

of the latent voxels, whereas in real submarine fans, the 

correlations can be much longer-range. Fortunately, in a full 

Bayesian workflow, the GAN latent space would not be 

sampled at random but would be focused, according to the 

Bayesian inference algorithm, by the measured seismic and 

well data that constrain the larger scales of geology.  

 

To illustrate what a more correlated sample from the GAN 

might look like, we constructed a valid latent-space 

coordinate by tiling the latent coordinates of smaller patches, 

one having mostly sand and the other mostly shale (Fig. 3b 

& 3c, respectively). The top four rows of latent voxels are 

constructed from 16 copies of Fig. 3b (with adjustments 

made to the latent space padding). The next four rows consist 

of 16 copies of Fig. 3c, followed by 16 copies of Fig. 3b, and 

finally 16 of Fig. 3c again.  This periodic latent space 

 

Figure 2:  A map view of a 3D image generated by a process 

stratigraphy model, with feeder channel shown in the lower right.  

Color indicates average Vclay (black: shale; yellow: sand). Red 
squares are example patches extracted for training the GAN. 

 

Figure 3: a) Randomly selected training patches of height/width 

32 m/800 m. b-d) Random samples from a trained GAN (left) 

together with the corresponding latent space coordinate (right), 

padding voxels omitted for clarity. 
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coordinate generates a periodic output image (Fig. 4b), with 

alternating sand/shale layers roughly corresponding to the 

locations of the latent patches belonging to the sand/shale 

patches in Fig. 3b-c. Some blending and transformation of 

the patterns also occurs due to the convolutions and 

nonlinear activation functions in the GAN. 

 

For a more quantitative comparison between GAN outputs 

and training data, we computed histograms of individual 

voxels collected from multiple images (Fig. 5), as well as 

pooled averages of 32 × 32 × 32 voxel neighborhoods 

(Fig. 6) to examine the statistics at a larger length scale. The 

statistics of the trained GAN (green curves) agree well with 

the training set (red curve), both at the original training-set-

patch size as well as larger, extrapolated output sizes. 

 

As a final test of whether the trained GAN is fit for use, we 

measured the sampling time per image with a constant 

minibatch size of two on an NVIDIA® V100 GPU using 

PyTorch v2.1 (Fig. 7; Paszke et al., 2019). To improve 

accuracy, we increased the total number of generated images 

so that the total wallclock time is at least 1 second for each 

data point. As shown in Fig. 7, sampling time approaches 

linear scaling with voxel count at large sizes, where images 

containing 3e7 voxels still take less than a second. 

 

Improved Convolutional Padding for Better Quality 

 

With any convolutional neural network (CNN), a decision 

needs to be made about how to treat pixels/voxels at the 

boundary of the input, which lacks a full neighborhood for 

the convolutional kernel to operate on.  In computer vision 

CNNs, it is common to pad the boundary with zeros, an 

approach adopted for a previous version of the fully 

convolutional GAN (Jetchev et al., 2016; Song et al., 2022).  

For a fixed output size, we would expect the network to 

adapt to this artifact during training, however when 

extrapolating to larger output sizes, the ratio of boundary to 

interior voxels decreases, leading to unpredictable output 

and statistics, as shown by the blue curves in Figs 5 and 6 

that deviate from the training set distribution. Switching to 

“replicated” padding gives similar results. To avoid these 

artifacts, we switched all convolutions to “valid” mode, 

meaning they only operate on full neighborhoods, shrinking 

the size of the convolution output. To compensate for the 

shrinking, we padded the latent space with multiple shrouds 

 

Figure 4: a) A random 128 m × 3200 m × 3200 m sample from a 

trained GAN (left) together with the corresponding latent space 

coordinate (right), padding voxels omitted for clarity. b) A GAN 

sample generated from a latent coordinate manually constructed by 

tiling the smaller latent coordinates from Fig. 3b-c. 

 

Figure 5: Histograms of Vclay values in voxels collected from 

multiple images from either trained GAN's or the training set. 

 

Figure 6: Histograms of Vclay values in 32 × 32 × 32 pooled 

averages of neighboring voxels (pooling example in lower right) 

collected from multiple images, either sampled from the training set 

or from GAN’s trained with different types of padding. 

 

Figure 7: Time to sample a single image from the GAN as a function 

of voxel count. Orange line indicates linear scaling. 
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of voxels, accounting for the number of convolutions, up-

sampling steps, and kernel size. In other words, by padding 

the latent space, the GAN is generating its own padding for 

the downstream convolutions, rather than assuming a fixed 

value. This alternative padding produces statistics that are 

invariant with output size, leading to better quality and more 

predictable behavior, as shown by the green curves in Figs 5 

and 6 that agree well with the training set at multiple sizes 

and length-scales. 

 

Training Strategy for Shrinking the Latent Space 

 

Seismic inversion consists of searching the space of earth 

models (rock/fluid property distributions) for the model or 

distribution of models most consistent with the measured 

seismic and well data.  We expect that this search would be 

easier in a lower-dimensional search space less impacted by 

the “curse of dimensionality” (Fernández-Martínez & 

Fernández-Muñiz, 2020). The GAN shown in Fig. 4 already 

achieves significant compression (500x, excluding latent 

padding). One way to push compression higher is to train on 

larger patches, while keeping the latent-space training size 

fixed. A side effect of this change is that the projective field 

also increases, leading to greater continuity at large scale at 

the expense of expressivity (diversity of output). Moreover, 

in training sets derived from process stratigraphy models 

(see Fig. 2), larger training patches would also decrease the 

number of unique patches that can extracted for training. 

 

We tested a training strategy that increases compression 

while preserving the expressivity and training-set size of the 

original GAN. We used the trained GAN from Figs. 3-4 to 

synthesize training images of size 64 m × 1600 m × 1600 m, 

8x larger than the original training patch size. We then 

trained another GAN on these synthetic patches, keeping the 

latent space size the same, achieving an ~8x increase in 

compression, for a total rate of 4000x (excluding latent 

padding). The output quality (Fig. 8) and statistics of the 

derived GAN are comparable to the original GAN. 

 

Data Augmentation with Additional Prior Knowledge 

 

As previously described, we experimented with adding two 

attributes that encode the relative azimuthal angle between 

the feeder channel axis and voxel location within the 

submarine fan. This angle roughly correlates with the 

orientation of sand bodies in our training set. The inclusion 

of these extra attributes would give a Bayesian inference 

algorithm more control over channel orientation in posterior 

samples, should such knowledge of regional orientation 

exist a priori. With the addition of these attributes, we 

initially observed lower quality in GAN output, a result we 

speculate to be caused by very different spatial correlations 

between these new attributes and the original ones (Vclay & 

porosity), versus correlations between the original ones 

themselves.  We later observed much better quality after 

training with a GAN containing two separate generators 

connected to the same latent space (Fig. 9).  

 

CONCLUSIONS 

 

We identified and trained a generative ML model that meets 

the requirements of fast sampling time and a highly 

compressed latent space, ideal for Bayesian inference, 

specifically, that involving seismic data at commercially 

relevant scales (>1e7 voxels). As part of this work, we 

increased the quality of very large outputs by improving how 

convolutions are padded, and demonstrated how 

compression could be increased by using a low-compression 

GAN to train a high-compression one. Finally, we 

augmented training data with attributes representing sand-

body orientation, allowing a Bayesian inference algorithm to 

control channel orientation in posterior samples more 

directly. 

 

Figure 8: 64 m × 1600 m × 1600 m outputs and corresponding 

latent coordinates from a) the original GAN (Figs 3-4), and b) a 
more compressed GAN trained on output from the original GAN. 

 

Figure 9: Outputs from a GAN trained on patches from a highly 

channelized submarine fan, where patches carry information about 

channel orientation.  Vclay attribute with shale voxels made 
invisible for clarity (left).  Vector field showing regional channel-

orientation attribute (right). 


