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SUMMARY

Conventional full-waveform inversion is notorious for being
sensitive to the choice of a starting model. Moreover, it re-
quires low-frequency data to be able to reconstruct the model
accurately. To overcome these limitations, we propose a
formulation of FWI using frequency-extended slowness and
impedance models. We pose and solve this problem in the fre-
quency domain using one-way wave extrapolation operators.
Extended slowness model allows for wavefields to be phase-
shifted (equivalently, time-shifted) leading to non-physical
wave propagation and forward scattering. Frequency-extended
impedance model, used to compute reflectivity, allows for non-
physical backward scattering and is updated simultaneously
with slowness. As a result of iteratively updating the two ex-
tended models, FWI data residuals can be modeled accurately
even in the presence of large errors in the starting velocity
(slowness) model.
During the inversion, we use multi-scale approach in space by
implementing variable spline grid parametrization. We utilize
a fine spline grid for the extended impedance to capture the
reflectivity of the model and to be able to accurately model
the data residuals. We start the inversion with a coarse spline
grid for the extended slowness, leading to low-wavenumber
updates, and gradually increase it at each step of multi-scale
iteration. The variability of the model parameters with fre-
quency can be controlled in a similar way by choosing appro-
priate spline grid parametrization.
As a result, accurate slowness model can be recovered even
from a rough starting model and with no low-frequency com-
ponents in the data. The proposed method does not require in-
termediate step of solving a least-squares problem for extended
reflectivity and is computationally attractive. We demonstrate
the effectiveness of our approach on a synthetic example.

INTRODUCTION

Model extension has been demonstrated to be a powerful tech-
nique for dealing with the cycle-skipping problem of full-wave-
form inversion by various authors (Biondi and Almomin, 2012;
Huang et al., 2017, Barnier et al., 2018, Barnier et al., 2023).
Velocity model reconstruction based on this tool has been shown
to result in better solutions compared to the conventional FWI
(Almomin and Biondi, 2012; Barnier et al., 2019). Inversion
methods such as tomographic full-waveform inversion (TFWI)
or full-waveform inversion with model extension (FWIME)
are based on the concept of finding and using an extended re-
flectivity as a means for data residuals matching in the pres-
ence of inaccurate starting velocity model. Using the recon-
structed extended reflectivity avoids cycle-skipping, and as a
result, tomographic component of the FWI-gradient can be
computed accurately and used to update the velocity model.
These methods rely on solving for extended reflectivity using

extended least-squares migration at each iteration of the veloc-
ity update. Moreover, the extended scattering (imaging) con-
dition requires a convolution (cross-correlation) of the back-
ground wavefield with the extended reflectivity (or scattered
wavefield) in time or in space. Therefore, existing methods
based on the extended models can be computationally unfeasi-
ble in realistic scenarios.

We propose using model extension in the frequency domain,
that offers both computational and theoretical advantages. Us-
ing frequency-domain (complex-valued) slowness model leads
to a modified (extended) wave equation. Solving this equation
directly removes the necessity to introduce extended reflectiv-
ity and leads to a fully non-linear inversion scheme without the
need to solve an inner least-squares problem.

Performing frequency-extended imaging condition is compu-
tationally efficient and involves correlating and keeping each
frequency component of the wavefields independently. In this
way, every iteration of the proposed extended FWI has the
same computational cost as the conventional frequency-domain
FWI. In order to converge to a physical solution, a regulariza-
tion term is added to promote similarity in the extended model
across frequencies.

To propagate wavefields efficiently in the frequency-domain
we use one-way wave extrapolation operators (Claerbout, 1985)
based on the phase-shift plus interpolation (Gazdag and Sguaz-
zero, 1984) and split-step correction (Stoffa et al., 1990). Me-
thods based on the one-way wave extrapolation for wave simu-
lation have been suggested before (Berkhout, 2012, Verschuur
et al., 2016), however, their adoption for the waveform inver-
sion still remains limited. To be able to model reflected waves
we introduce a variable complex-valued extended impedance
model. We approximate the reflection operator as scaling of
the downward going wavefields by the reflectivity equal to
zero-incidence reflection coefficient.

The slowness-impedance parametrization of the forward mo-
deling operator (and its linearized version) leads to natural se-
paration of the forward- and backward-scattering components
of the FWI gradients. We use different spline grid (Knott,
2000)s parametrization for the two models to control their re-
spective smoothness. Having fine (high-resolution) spline grid
for impedance allows to capture the extended reflectivity and
preserves the property of data-residual matching. On the other
hand, the slowness model is projected to a coarser, or low-
resolution, spline grid to promote smooth updates at early stages
of inversion. This strategy leads to correct low-wavenumber
updates to the slowness model and allows to recover accurate
models starting from a rough initial estimate and data not con-
taining low frequencies.
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METHODOLOGY

We propose using the following modification to the acoustic
wave equation:∫

s2(τ)
∂ 2p
∂ t2 (x, t − τ)dτ −∇

2p(x, t) = 0, (1)

where the second derivative of the pressure field p is convolved
with the time-varying slowness-squared s2(τ), rather than be-
ing scaled by it as in the conventional wave equation. Applying
Fourier transform along the time axis we get:

−ω
2ŝ2(ω)p̂(x,ω)−∇

2p̂(x,ω) = 0, (2)

where convolution in time becomes multiplication in the fre-
quency domain of the pressure second derivative (−ω2)p̂(x,ω)
and frequency-varying slowness-squared ŝ2(ω). Note, that the
equation 2 is basically the Helmholtz equation with frequency-
varying complex-valued slowness model.

Extended modeling using one-way approximation

To solve the wave equation 2 we apply Fourier transform along
the lateral axis and factorize it into two one-way wave equa-
tions:(

∂
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− i
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√
ω2ŝ2(ω)− k2

x

)
= 0.

(3)

We solve one-way wave equation using phase-shift plus inter-
polation (Gazdag and Sguazzero, 1984) and split-step correc-
tion (Stoffa et al., 1990). Similar to solving conventional one-
way wave equation, the wavefields are extrapolated in depth
but the slowness is different for each frequency component of
the wavefield.

Equation 3 allows us to propagate wavefields upward and down-
ward, however, it does not take into account reflections. We ap-
proximate reflection process by scaling the downgoing wave-
field by zero-incidence reflectivity that can be computed using
either slowness-only (constant density)

Rs(x,z j,ω) =
s(x,z j,ω)− s(x,z j+1,ω)

s(x,z j,ω)+ s(x,z j+1,ω)
(4)

or impedance parametrization

RI(x,z j,ω) =
I(x,z j,ω)− I(x,z j+1,ω)

I(x,z j,ω)+ I(x,z j+1,ω)
(5)

The downward going wavefield is scaled by the reflectivity
computed using equations above and re-injected as a source
of upward propagating wavefield. Hence, the process of mod-
eling reflected waves using proposed approach can be repre-
sented as a chain of non-linear operators in slowness-only:

f(s) = LT (s)R(s)L(s) (6)

or slowness-impedance parametrization

f(s,I) = LT (s)R(I)L(s), (7)

where L represents downward continuation, LT – upward con-
tinuation and R – reflection operators. Downward continuation

operator can be represented as a lower triangular matrix acting
on the wavefield, where each row represents an extrapolation
operator to the next depth level. Note, that upward continua-
tion is a transpose of a downward continuation (not adjoint) be-
cause the extrapolation proceeds forward in time starting from
the bottom to the top of the model.

Extended full-waveform inversion

Using the extended forward modeling operator f(m), where
m could be either represented by slowness (equation 6) or
slowness-impedance pair (equation 7), we set up the inversion
problem.

To compute the gradient with respect to the model parameters,
we linearize the forward operator f(m), using the chain rule:

df
dm

(m) =
dU
dm

(m)R(m)D(m)+U(m)R(m)
dD
dm

(m)

+U(m)
dR
dm

(m)D(m) (8)

The first term represents forward scattering upward, second –
forward scattering downward and the third – backward scat-
tering components. The adjoint of the operator in the equa-
tion 8 is used to compute FWI gradient. Note, that slowness-
impedance parametrization in equation 7 allows for natural
separation between tomographic and reflectivity component of
the FWI gradient that is used during the inversion.

To converge to a physical solution, where the slowness is the
same for each frequency, we add a regularization term with the
DSO as a regularization operator (Symes and Carazzone, 1991,
Symes, 2008). By using the duality property of the Fourier
transform F , the frequency-domain equivalent of the time-lag
DSO operator Dω becomes

τ
F
=⇒ i

∂

∂ω
, (9)

which has the meaning of promoting similarity of the extended
model across the frequency axis by minimizing its first deriva-
tive.

Finally, thanks to the separation of the variables, we can use
different spline parametrization for extended slowness and im-
pedance models to control their relative smoothness:

m =

[
s
I

]
=

[
Ss 0
0 SI

][
ps
pI

]
= Sp, (10)

where ps represents the preconditioned variable for slowness,
pI – preconditioned variable for impedance, and operators Ss
and SI – spline interpolation operators for slowness and impe-
dance respectively.

As a result, we can pose the problem of extended full-waveform
inversion as minimization of the following objective function
over a preconditioned model p:

φ(p) =
1
2
∥Kf(Lp)−dω∥2 +

ε2

2
∥Dω Lp∥2 (11)

with dω representing observed data in the frequency domain
and K – wavefield sampling (recording) operator.
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RESULTS

We evaluate the performance of the proposed algorithm on a
synthetic example. To generate the data used for the inversion,
we use the source wavelet in the Figure 1, the velocity model
shown in the Figure 2a and the modeling operator in the Equa-
tion 6. The data contains only reflections, no energy below 3
Hz and maximum offset of 8 km. We start the inversion using
the velocity model shown in the Figure 2b.

(a) (b)

Figure 1: Source wavelet used to model the observed data: (a)
– in time, (b) – in the frequency domain.

(a) (b)

Figure 2: Velocity model used to model the observed data (a)
and starting model for extended FWI (b) constant along the
frequency axis.

We perform the inversion using a multi-scale approach both
in space and in the frequency domain by using slowness-im-
pedance parametrization (Equation 7). We minimize the ob-
jective function in the Equation 11 using non-linear conjugate
gradient method (Fletcher and Reeves, 1964). The spline grid
spacing for slowness model used in the inversion is refined at
different stages as listed below:

(g1) 1100 m x 190 m x 0.3Hz and 4-6 Hz data

(g2) 890 m x 150 m x 0.4Hz and 6-8 Hz data

(g3) 720 m x 110 m x 0.6Hz and 8-10 Hz data

In order to promote low-wavenumber updates to the slowness
model, we start the inversion with the low frequency range
of 4-6 Hz and coarse spline sampling (g1). We then increase
the data frequency range to 6-8 Hz and 8-10 Hz and refine the
spline grid to (g2) and (g3) respectively. The inverted slowness
model at a current spline grid is used as a starting model for
the next grid refinement. The impedance model is updated
at each iteration simultaneously with slowness and a constant
homogeneous model is used as a starting impedance model at
each of the (g1 −g3) stages.

In order to get the ”physical” models we average extended
models across frequency axis that corresponds to the conven-
tional imaging condition in the frequency domain. Figure 3

(a)

(b)

(c)

Figure 3: Inverted models at successive multi-scale steps ave-
raged across frequency axis (zero time-lag): (a) – g1, (b) – g2,
(c) – g3; top – velocity, bottom – impedance model.
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shows the inverted models after each stage of the spline grid
refinement. As expected the impedance models possess high-
wavenumber (reflectivity) features, while the velocity models
are relatively smooth with gradually increased resolution go-
ing from grid (g1) to (g3). In all three spline grid refinement
stages, both the data fitting and the regularization term demon-
strate good convergence (Figure 5), and, as a result, accurate
velocity models are recovered with almost no variation along
the frequency axis.

Next, to populate the model with higher wavenumbers, we
perform extended FWI using slowness-only parametrization
(Equation 6) and the starting velocity model in the Figure 3c.
We start the inversion with the data in the 4-6 Hz frequency
range (Figure 4a), followed by the extended FWI in the 6-8
Hz frequency range (Figure 4b). Finally, we run the conven-
tional FWI using the full frequency range and reconstruct the
velocity model shown in the Figure 4c. The edges of the re-
constructed model are not reliable due to insufficient angular
coverage. Additionally, some ”ringing” artefacts are present
because of the relatively narrow frequency bandwidths used
in the previous steps. However, the main features of the true
model (Figure 2a) and the velocity values are accurately recov-
ered.

(a)

(b)

(c)

Figure 4: Inverted models (a-b) using extended slowness-only
parametrization at successive multi-scale steps averaged across
frequency axis (zero time-lag): (a) – 4-6Hz, (b) – 6-8Hz. Final
inverted velocity model after FWI (c).

CONCLUSION

We propose a computationally efficient frequency-domain for-
mulation of full-waveform inversion using extended slowness
and impedance models. With this method, wavefields are pro-
pagated using a frequency-variant slowness, facilitating non-
physical wave propagation and scattering and enabling accu-
rate modeling of data residuals even when starting from an in-
accurate velocity model. Our method does not involve solving
an intermediate least-squares problem for extended reflectiv-
ity, enhancing computational efficiency. We have implemented
a multi-scale approach in space by employing variable spline
grid parametrization, enabling the recovery of accurate slow-
ness models from rough starting estimates and data lacking
low-frequency components. Our results on a synthetic ex-
ample demonstrate the effectiveness of the proposed method.
Through successive iterations of multi-scale refinement, we
have achieved accurate velocity model reconstruction.

(a)

(b)

(c)

Figure 5: Inverted models at successive multi-scale steps as
function of frequency: (a) – g1, (b) – g2, (c) – g3; left – at x = 2
km, middle – at x = 5 km, right – at x = 7 km; top – velocity,
bottom – impedance model. Blue curve shows the normalized
values of the data fitting term, red curve – regularization term
of the objective function.


