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SUMMARY

Least-squares reverse time migration (LSRTM) stands out as
an effective method for delineating complex geological for-
mations, offering a way to offset the limitations posed by
limited offset data. However, a significant challenge arises
from the computation of gradients in each iteration, which
demands storing the entire background wavefield. For volu-
minous 3D models, this requirement can escalate to storing
terabytes of data for every shot, underscoring the limitations
even when employing advanced strategies like optimal check-
pointing, enhanced boundary conditions, and reduced wave-
field reconstruction due to the massive size of these mod-
els. Albeit a simple approach, archiving the entire background
wavefield on disk becomes increasingly relevant. Nonetheless,
this approach introduces several complications, including con-
cerns over the lifespan of storage mediums, performance bot-
tlenecks, and space usage constraints. An alternative strategy
involves leveraging computation in exchange for an expanded
storage footprint, in terms of both space and durability, by ap-
plying compression techniques. Nevertheless, when it comes
to scientific data, employing lossless compression on floating-
point numbers often falls short in significantly reducing space
requirements, which brings to light the potential benefits and
necessity for lossy compression methods. This study focuses
on exploring the impact of varying degrees of lossy compres-
sion, specifically utilizing the ZFP compression algorithm, on
the convergence, performance, and quality of LSM images,
with the goal of providing a deeper understanding through
practical experiments.

INTRODUCTION

The least-squares reverse time migration (LSRTM) main per-
formance bottleneck consists of the requirement to preserve
the forward background wavefield for computing the gradi-
ent via the adjoint state method during reverse propagation.
This challenge is not unique to LSRTM but extends to other
adjoint method-based inversion/optimization techniques and
time-dependent partial differential equation (PDE) solvers, as
documented in the literature (Cardesa et al., 2020; Hascoet
and Pascual, 2013; Dussaud et al., 2008), including full wave-
form inversion (FWI). Although strategies such as checkpoint-
ing (Griewank, 1992; Symes, 2007), wavefield reconstruction
with decimation(Yang et al., 2016), and innovative boundary
condition methods (Dussaud et al., 2008; Yang et al., 2014)
have been proposed to mitigate the storage burden, these tech-
niques still necessitate considerable storage capacity and com-
putational power, especially for large 3D models.

This research delves into the consequences of applying lossy
compression, with a focus on the ZFP algorithm for the stor-
age of the background wavefield during LSRTM procedures.
It seeks to fill a research void concerning the effects of com-
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Figure 1: Convergence curves for different rates and tolerances
(a). L2 norm of the lossless least-squares model and the lossy
one for different rates and tolerances (b).

pression on the convergence rates and the quality of images
produced through least-square migration techniques. This in-
quiry extends previous studies on compression’s role in for-
ward wave inversion (FWI) and reverse time migration (RTM)
(Kukreja et al., 2022; Huang et al., 2023), with the objective
of shedding light on the compromises associated with the use
of lossy compression in computing-intensive applications like
LSRTM.

Throughout this document, vectors are represented as bold low-
ercase letters, linear operators by bold uppercase, functional
mappings by uppercase, and other functions in lowercase and
constants are signified using Greek symbols.
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Figure 2: Original size=168.61 GB

LEAST-SQUARES REVERSE TIME MIGRATION

The code implemented for this work, has forward and adjoint
states, and gradient based on the L2 norm cost function:

J(m) =
1
2

∑
s,r

∫ T

0
(Ss,r ps(x)−ds,r(x))2 dt, (1)

where Ss,r is the source-receiver sampling operator, ps is the
forward state variable, m is the reflectivity model, and ds,r
is the data. The least-squares migration technique has a lin-
ear forward state equation mapping with relation to the model,
which allows for least-squares optimization tecniques such as
conjugate gradient. We used the following parametrization for
the forward-state equations:

F(m) =


po(x,0) = 0,
∂ po(x,0)

∂ t = 0,
1

co(x)2
∂ 2 po(x,t)

∂ t2 −∇2 po(x, t) = fs(x, t),
1

co(x)2
∂ 2δ p(x,t)

∂ t2 −∇2δ p(x, t) = ∂ 2 po(x,t)
∂ t2 m,

(2)

where po is the background wavefield, co is the background
velocity model, δ p is the perturbation wavefield. The adjoint
state equations are:

F∗(m)=


λ (x,T ) = 0,
∂λ (x,T )

∂ t = 0,
1

co(x)2
∂ 2λ (x,t)

∂ t2 −∇2λ (x, t) =
∑

r(S
T
s,r(Ss,rδ p(x, t)−ds,r),

(3)
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Figure 3: Dot product test result vs rate and tolerance, matched
with size of background wavefield.

where λ is the adjoint state variable, and ST is the adjoint of
the sampling operator. Finally, the gradient is given by:

∂

∂m
J(m) =

∑
s

∫ T

0
λ (x, t)

∂ 2 po(x, t)
∂ t2 dt. (4)

Please observe that the gradient calculation requires the back-
ground wavefield po to be saved at all time steps for it to be
correlated with λ . Given λ has final boundary conditions (i.e.
λ (x,T ) = 0), the efficient way to compute it is to propagate the
adjoint wavefield associated with it backwards together with
the calculation of the gradient in Equation 4, which constitutes
the main problem of the LSRTM and RTM in general. In this
work, the ZFP compression algorithm is used to compress po
to decrease the storage size it occupies.

In this work, I actually use a relative dot product test result
defined by:

α =

∣∣∣∣∣ ⟨Lm̂, d̂⟩−⟨m̂,L∗d̂⟩
⟨Lm̂, d̂⟩

∣∣∣∣∣ , (5)

where m̂ is a random model, and d̂ is a random data. L is
the linear operator that represents the linear operator that in
the foward pass applies the forward state equations and in the
adjoint pass, applies the gradient.

OVERVIEW OF ZFP COMPRESSION TECHNIQUE

ZFP is an innovative compression algorithm tailored for multi-
dimensional arrays, employing a unique approach by segment-
ing the data into blocks of 4d elements, where d is the number
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of dimensions of the input array. This strategy, reminiscent
of techniques used in graphical texture compression, allows
for independent processing of each block, enhancing the effi-
ciency and flexibility of the compression process.

In the experiments performed in this work, the multifile com-
pressor of the SequentialCompression.jl package* was
used. It consists of splitting the input array in its last dimen-
sion, compressing each part in parallel using the ZFP algo-
rithm, and saving the result in different files, one per thread.
Additionally, the experiments in this work base themselves on
analyzing rate and tolerances, and their effect on least-squares
migration, given precision has very similar behaviour to rate.

There are four compression modes for ZFP, fixed-precision,
fixed-tolerance, fixed-rate and lossless. Since the ZFP algo-
righm first segments the data into 4d blocks, where d is the
number of dimensions, these modes are specified in a per-
block basis. Both the fixed-precision and fixed-rate allow the
user to specify the number of bit-planes for the block or indi-
vidual values respectively. The fixed-accuracy allows the user
to specify the desired maximum absolute value difference be-
tween the lossy compressed blocks and the original uncom-
pressed block of the original data.

NUMERICAL EXPERIMENT

This study involved conducting 10 Conjugate Gradient Least
Squares (CGLS) iterations and a basic Reverse Time Migra-
tion (RTM) using the linear operator from Section , employ-
ing the SequentialCompression.jl for wavefield compres-
sion. The experiment utilized a downsampled, smoothed Mar-
mousi model(Brougois et al., 1990) sized at nz,nx = 201,512
and grid spacing dz,dx = 10,10 m. With 100 shots spaced
evenly from x = 100 m to x = Lx m, where Lx represents the
model’s width, and an absorbing boundary of nb = 50, the
simulation ran for nt = 2048 timesteps at a max frequency of
15Hz, using observed data from the full second-order acoustic
wave equation.

Figure 1a illustrates the convergence across different compres-
sion rates and tolerances, showing deviation from lossless com-
pression starting at the 8th iteration for lower rates and higher
tolerances. Figure 1b examines the L2 norm differences be-
tween lossless and lossy models, revealing a direct link be-
tween tolerance, rate, and error, with the latter decreasing as
the rate increases. Despite the per-block error control, this lin-
ear trend underscores the tolerance’s impact on overall error.

Figure 4 compares the least squares migrated images under
various rates and tolerances, indicating minimal perceptual dif-
ferences. These results highlight significant space savings, de-
fined as:

space saving = 1− compressed size
uncompressed size

, (6)

with uncompressed and compressed sizes calculated over all
shots. Notably, even at the lowest rate and highest tolerance,

*The package can be found at the GitHub repository: https://github.com/

AtilaSaraiva/SequentialCompression.jl.

space savings can exceed 90%, based on an original uncom-
pressed wavefield size of 168.61 Gb.

A secondary experiment evaluated the dot product test out-
come, using the same velocity model but with random reflec-
tivities and data, as detailed in Equation 5. Figure 3 show that
there is a inverse proportinaly relationship between rate and
the dot product test result, with a sweet spot between total file
size of the background wavefield and the dot product test re-
sult being 30 bits per double. For tolerance it shows that the
lower the tolerance, the lower the dot product test result, with
a sweet spot of total file size of the background wave field and
dot product test result around 10−6. The values of total fize
size however are in different orders of magniture for rate and
tolerances in this case, most likely because of the nature of
random reflectivity, with tolerances giving much lower sizes.

CONCLUSIONS

The findings highlight the efficiency of implementing the ZFP
compression algorithm in the LSRTM (Least Squares Reverse
Time Migration) process, demonstrating minimal impact on
convergence and image quality. The integrity of the approach
is supported by dot product test outcomes, indicating negligi-
ble errors introduced by the compression, thereby preserving
data integrity within acceptable loss parameters. The achieved
space reductions are notable, even with stricter compression
settings, emphasizing the ZFP algorithm’s effectiveness in re-
ducing data volume.

To sum up, this investigation confirms the feasibility of inte-
grating the ZFP compression algorithm into LSRTM opera-
tions. It paves the way for improved data handling and com-
putational efficiency in seismic inversion activities. This study
suggests a viable strategy for managing large-scale data in geo-
physical exploration, offering insights that could be applica-
ble across various fields facing challenges with large data vol-
umes.
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Figure 4: CGLS migrated image after ten iterations for different compression tolerances and rates. Original summed over shots
background wavefield size=168.61 GB


