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SUMMARY 

 

Advanced 3D geological modeling and automated 

stratigraphic correlation improve our understanding of the 

geology at a basin scale. The process of correlating 

geophysical well logs is sped up using the Dynamic Time 

Warping (DTW) algorithm. The workflow enables the 

efficient analysis of extensive datasets that contain 

thousands of well-logs, reducing the challenges of manual 

interpretation. Accurate 3D stratigraphic and log property 

models can be created at a basin scale using various 

technologies. In this article, we illustrate the concepts with 

an application to the Midland Basin. 

 

INTRODUCTION 

 

Correlating geophysical well logs is necessary for building 

basin-scale stratigraphic models, a crucial yet labor-

intensive task. In addition, using the manual correlation 

makes it difficult to take advantage of all the stratigraphic 

information from dense well-log datasets. There is a clear 

need for automation to improve efficiency and 

reproducibility. Various approaches have been introduced to 

automate geological boundary detection from well-log data. 

Dynamic time warping (DTW) and artificial intelligence 

(AI) have been utilized for correlating signal sequences and 

extended to the domain of geology for well-to-well 

correlation (Zoraster et al., 2004; Lineman et al., 1987; 

Smith and Waterman, 1980; Le Nir et al., 1998; Baldwin et 

al., 1989; Luthi and Bryant, 1997; Po-Yen Wu et al., 2018; 

Brazell et al., 2019; Tokpanov et al., 2020). Despite 

advances in automation, the reliance on conventional manual 

interpretation persists in most log correlation projects, 

particularly in datasets consisting of tens of thousands of 

logs. These present significant challenges to reproducible 

and efficient manual workflows. These workflows often 

require interpreters to focus on fine-scale details in a limited 

number of logs, making it challenging and time-consuming 

to assess the large-scale structure of the subsurface. 

Furthermore, generating accurate 3D property and 

stratigraphic volumes from well-log data, especially in 

horizontal sections of producing formations, faces obstacles 

such as data quality variability, lateral reservoir variability, 

and the complexity of accurately modeling these variations. 

 

The focus area of our study is the Midland Basin, whose size, 

complex geology, stacked pay zones, and variable 

lithologies make extensive manual interpretation 

prohibitively expensive. Our study extends the ChronoLog 

(Sylvester, 2023) automated stratigraphic correlation 

workflow to address these issues. ChronoLog provides 

automated tools for constructing high-resolution, three-

dimensional stratigraphic models. This framework enables 

the processing of basin-scale data and allows geo-scientists 

to visualize and interpret the spatial distribution of rock 

types, porosities, permeabilities, and hydrocarbon saturation 

levels in 3D. 

 

STUDY AREA 

 

The study area of interest (AOI) is the Midland Basin, 

spanning Glasscock, Howard, Martin, and Midland counties. 

We use an extensive dataset of approximately 30,000 

vertical and 6,550 producing horizontal wells (Figure 1). The 

ChronoLog methodology requires an initial input set of 

interpreted formation tops to constrain the well-log 

correlation. We select interpreted formations tops that 

provide the largest span of our 3D property generation 

spatially and in-depth; these include the Rustler, Bone 

Spring/Upper Spraberry, Wolfcamp, Strawn, Devonian 

Carbonate, and Ellenburger.  

 

 

 

METHODOLOGY 

 

Data Selection and Pre-processing: 

 

Our well data preprocessing pipeline starts with automated 

data cleaning. It comprises curve categorization, verification 

of information, splicing, merging, depth shifting, 

normalizing, and quality editing. The gamma-ray curves are 

also standardized to an interval from 0 to 1, an important step 

 

Figure 1: Map of well locations in the Midland Basin, covering 
Glasscock, Howard, Martin, and Midland counties, indicating 

vertical and horizontal wells. 



 

when evaluating numerical well-to-well correlation and for 

the following well-curve imputation step. To maximize the 

collection of available well data, we impute missing log 

curves on the clean well data using an ARLAS (Gonzalez et 

al., 2023) model trained specifically for the Permian Basin. 

Using ARLAS, a consistent collection of five logs is 

available in every interpreted well: the bulk density, gamma-

ray, neutron porosity, deep resistivity, and compressional 

sonic curves. 

 

To apply the stratigraphic correlation workflow effectively, 

we seek to maximize the largest collection of wells where 

we have manual interpretation defining a formation's top and 

base depth. The availability of manually interpreted tops 

varies across formations, and the subset of wells containing 

all required tops is limited. However, our iterative modeling 

approach does not require tops at every well location. It is 

sufficient to have a coverage of interpretation across the 

AOI, but not every well in the dataset must have an 

interpretation for every formation. This significantly 

expands the pool of wells incorporated into the workflow.  

 

Dynamic time warping-based well-to-well correlation 

 

Chronolog uses a DTW algorithm to align well logs based 

on manually interpreted formation tops and normalized 

gamma-ray curves pairwise. This method aligns geological 

features across pairs of well logs, accounting for 

discrepancies in deposition times or layer thickness resulting 

from geological processes.  

 

A well connectivity graph is first created to reduce the 

computational overhead of the dynamic time warping, which 

is significant at the basin scale. ChronoLog only evaluates 

pairwise correlations for connected nodes in this graph. The 

edges of this graph represent proximity or relational ties to 

neighboring wells. In parts of the AOI that are well covered 

spatially by interpretation, the graph is cut between wells 

more than 3 km apart. We still attempt to include data in 

parts of the AOI with sparse well coverage; here, a Delaunay 

triangulation creates edges between wells, which are not 

subject to the 3 km maximum proximity. The objective is to 

ensure a comprehensive network that facilitates as much 

accurate stratigraphic analysis as possible.  

 

DTW will always yield a result, even for unrelated 

sequences. For this reason, we filter the set of well pairs 

based on the normalized DTW cost (Rath et al., 2003) for the 

pair.  

 

For two sequences 𝑠1and 𝑠2 with length 𝑁1 and 𝑁2 , this cost 

is: 

 

𝐶𝑛𝑜𝑟𝑚 = 𝐶𝑜𝑠𝑡(𝑠1, 𝑠2)/(𝑁1  ∗  𝑁2) . 

 

After computing this cost across our dataset of wells, we 

identify pairs where the cost is greater than the 99th 

percentile. The network connectivity graph is cut for these 

pairs, and if a well is left unconnected from the graph, it is 

removed from the analysis. Using least-squares 

optimization, ChronoLog creates a consistent set of pair-

wise depth correlations (Wheeler and Hale, 2014). The result 

is a chronostratigraphic diagram that aligns the well curves 

in relative geologic time (RGT) (Figure 2). 

 

ChronoLog then applies a Continuous Wavelet Transform 

(CWT) and systematically identifies stratigraphic 

boundaries by detecting zero-crossings in the wavelet 

transform, indicating geological feature changes (Cooper et 

al., 2009). This segmentation is later used to create 

aggregated 3D properties across the basin. The scale 

parameter in this method can be thought of as the bandwidth 

of a Ricker wavelet. Less fine detail is retained as the scale 

increases. This study uses a setting of 4 samples to produce 

a rich set of stratigraphic layers without additional manual 

interpretation.  

 

 

 

 

Development of 3D Geological Models 

 

Our workflow does not require every well to contain 

interpreted tops for every formation. Instead, a basin-wide 

chronostratigraphic diagram is created in a layercake 

fashion, stacking diagrams and segmented sequences 

assembled for the Rustler, Bone Spring/Upper Spraberry, 

Wolfcamp, Strawn, Devonian Carbonate, and Ellenburger 

formations. For this reason, many of the wells in the dataset 

 

Figure 2: Chronostratigraphic diagram illustrating the alignment 

of well logs in RGT, utilizing normalized gamma-ray curves for 

Rustler formation. 



 

may lack certain stratigraphic layers identified by 

ChronoLog. 

 

A problem with naively imputing the missing sequences by 

a simple interpolated grid is that the result may not preserve 

the correct sequence. This is particularly relevant when 

geology is structurally complex. Instead, we use an iterative 

method based on interpolating segment thickness relative to 

a common reference point, as shown schematically in Figure 

3. The algorithm starts with an established reference point 

across the dataset, and then an interpolated map of segment 

thickness across the basin is computed. This thickness map 

is then used to forecast the interval of this segment in wells 

where it is missing. The top of the segment becomes the 

common reference point, and the algorithm iterates until 

consistent segmentation exists in all wells. 

 

 

With every stratigraphic top identified at each well location 

and characterized by a high spatial density, we can now 

interpolate depth values and log properties beyond the 

immediate areas surrounding the wells to generate maps with 

regular grids. This involves gridding both the identified 

stratigraphic tops and the average property values found 

between these tops, which serves as a foundation for 

building 3D geological models. 

 

Extended Stratigraphic and Property Model 

 

Expanding on the initial model, we now include all vertical 

wells in the dataset, regardless of whether their formation 

tops have been manually identified. By plotting the locations 

of these wells on the stratigraphic grids, we can identify 

previously missing formation tops while using all existing 

log curve data from those wells. We address gaps in the log 

curve data using the k-nearest neighbors’ algorithm, creating 

a comprehensive dataset and a complete property model with 

both formation tops and comprehensive well-log data. 

 

This expanded effort allows us to develop 3D stratigraphic 

and log property models, capturing each vertical well's 

known formation top and the log curve data. Following the 

methodology of the initial model, we use spline interpolation 

to fine-tune the log curve attribute grids. This technique 

ensures that geological features are depicted accurately, 

avoiding overlaps and ensuring continuity in our models. 

 

CASE STUDY 

 

In this section, we describe chronostratigraphic diagrams 

and log correlations generated with the automated 

stratigraphic correlation workflow and highlight their value 

in interpreting geological features. The workflow starts by 

selecting formations with well-supported tops, such as the 

Rustler, Bone Spring/Upper Spraberry, Wolfcamp, Strawn, 

Devonian Carbonate, and Ellenburger. We limited the 

distance between well pairs to 3,000 meters for correlating 

wells. With a segmentation scale set at 4, we identified 1,570 

stratigraphic units for 1,939 wells, which helped us create a 

detailed gridded model. This setup enabled precise spatial 

analysis. 

 

Development of Stratigraphic and Property Models 

 

We developed a 3D geological model using well-log data, 

featuring one stratigraphic volume and six property 

volumes, including normalized gamma-ray, sonic, neutron 

porosity, density, and resistivity. Each property volume 

offers insights into different aspects of the geology. The 

model is structured as a volumetric array, resembling a stack 

of layers, each representing a geological layer or formation 

(Figure 4b). This setup, visualized in Figure 4a, assigns a 

specific X-Y-Z coordinate to every point in the grid. We 

chose a 50-meter spatial resolution for the X and Y axes to 

balance detail with computational efficiency. To validate the 

accuracy of our 3D models, we generated synthetic logs for 

vertical wells within the AOI. We calculated the normalized 

Root Mean Square Error (RMSE) against the existing 

ARLAS logs. An example log track of a selected well in 

Figure 5 displays a comparison for the neutron log, with 

ARLAS logs in blue and synthetic logs in red. Validation 

focused on depth intervals with overlapping signals, 

showcasing the synthetic logs' capability to reconstruct a 

continuous signal throughout the wellbore. The findings 

show a normalized RMSE between 10-15% across all 

compared well logs, indicating a relatively close match.  

 

Figure 3: A schematic depicting the iterative process for 
interpolating missing formation tops, involving two main steps: 

1) constructing a thickness grid between identified tops and 

bases, and 2) applying thickness mapping to estimate missing 

formation tops. 



 

 

 

Deriving Log Data for Horizontal Wells in Reservoir 

Analysis 

 

Extracting log data from horizontal sections of wells is a 

critical step in understanding and evaluating reservoirs. This 

process provides key insights that help make informed 

decisions, optimize production, manage reservoirs 

effectively, and improve profitability. To do this, we rely on 

two main data sources: directional surveys (DS), which give 

us the X-Y coordinates for the paths of horizontal wells, and 

a set of 3D models of the stratigraphy and property data from 

well logs (Figure 6. a - 6. c).  Using the X-Y coordinates 

obtained from DS, we map and collect the log curve data and 

the stratigraphic tops for horizontal wells from the 3D 

models. We compute a comprehensive statistical analysis on 

these sections to determine critical metrics such as the 2nd 

and 98th percentiles, median, minimum, maximum, and 

average log responses (Figure 6b). This approach allows the 

statistical analysis of any curve attributes, including 

petrophysical properties, at any X-Y-Z coordinate.  

 

 

 

 

CONCLUSIONS 

 

Advanced 3D geological modeling and ChronLog 

automated stratigraphic correlation pipeline have enhanced 

the understanding of the Midland Basin's subsurface 

geology. These technologies have increased the accuracy 

and efficiency of constructing 3D stratigraphic and property 

models, aiding in exploring and developing unconventional 

hydrocarbon resources.  
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Figure 4: (a) 3D gamma ray model; (b) Map view showing the 

Wolfcamp formation top, represented as a stacked 2D layer 

within the stratigraphic volume.  

 

Figure 5: Log track comparison between synthetic logs (red) and 

ARLAS logs (blue) for a selected well. 

 

Figure 6: Diagrams showcasing well log data extraction from 

horizontal wells for reservoir analysis. (a) 3D gamma-ray 

volume analysis, (b) median gamma-ray values in producing 

wells, and respective (c) formation names. 


